scholarly journals Seismic Capacity Estimation of a Masonry Bell-Tower with Verticality Imperfection Detected by a Drone-Assisted Survey

2020 ◽  
Vol 5 (9) ◽  
pp. 72
Author(s):  
Francesco Micelli ◽  
Alessio Cascardi ◽  
Maria Antonietta Aiello

Masonry towers are considered an important part of cultural heritage due to their architectural and historical value. From a structural perspective these kind of buildings are considered slender elements, the same as a cantilever beam. In real cases it is not easy to model with high accuracy these heritage constructions, since the geometry and mechanical properties of the constituent materials are not adequately known. On the other hand, a deep knowledge of the structural and seismic vulnerability of the masonry towers is needed in order to preserve and retrofit, when necessary, their architectural and cultural value. In the present research an exhaustive study is presented, as it regards the assessment of the seismic vulnerability of a heritage masonry bell-tower, built in the 14th century. An innovative protocol of structural survey followed, and it is proposed herein. The geometry of the tower was easily obtained by digital photogrammetry assisted by a drone. The geometrical model was easily converted into a digitalized input, that was introduced into a finite element method (FEM)-based code. The 3D model was used for linear static, linear dynamic and nonlinear static (pushover) structural analyses. The vulnerability of the masonry tower was assessed and at least one kinematic was found to be not verified.

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 199-206
Author(s):  
Bertha Olmos ◽  
José Jara ◽  
José Luis Fabián

This paper investigates the effects of the nonlinear behaviour of isolation pads on the seismic capacity of bridges to identify the parameters of base isolation systems that can be used to improve seismic performance of bridges. A parametric study was conducted by designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (acceleration, displacement and pier seismic forces) were evaluated for two structural models. The first model corresponded to the bridges supported on elastomeric bearings with linear elastic behaviour and the second model simulated a base isolated bridge that accounts for the nonlinear behaviour of the system. The seismic demand was represented with a group of twelve real accelerograms recorded on the subduction zone on the Pacific Coast of Mexico. The nonlinear responses under different damage scenarios for the bridges included in the presented study were estimated. These results allow determining the seismic capacity of the bridges with and without base isolation. Results show clearly the importance of considering the nonlinear behaviour on the seismic performance of bridges and the influence of base isolation on the seismic vulnerability of medium size bridges.


2010 ◽  
Vol 133-134 ◽  
pp. 843-848 ◽  
Author(s):  
Adolfo Preciado Quiroz ◽  
Silvio T. Sperbeck ◽  
Harald Budelmann ◽  
Gianni Bartoli ◽  
Elham Bazrafshan

This work presents the investigation of the efficiency of different prestressing devices as a rehabilitation measure for the seismic risk mitigation of historical masonry towers. As a first phase, the seismic vulnerability of theoretical masonry towers was assessed by means of numerical models validated with information from the literature, observed damage and behavior of these structures due to passed earthquakes (crack pattern and failure mechanisms), and mainly taking into account the engineering experience. Afterwards, the validated models were rehabilitated with different prestressing devices; analyzing the results and concluding which device or the combination of them improved in a better way the seismic performance of the masonry towers. Finally, the methodology will be applied in two historical masonry towers located in seismic areas; the medieval tower “Torre Grossa” of San Gimignano, Italy, and one of the bell towers of the Cathedral of Colima, Mexico.


2018 ◽  
Vol 10 (4) ◽  
pp. 367-380 ◽  
Author(s):  
Hossein Kalantari ◽  
Kiarash Nasserasadi ◽  
Seyyed Aliasghar Arjmandi

2019 ◽  
Vol 817 ◽  
pp. 317-324
Author(s):  
Elena Zanazzi ◽  
Eva Coïsson ◽  
Daniele Ferretti ◽  
Alessio Lorenzelli

The May 2012 Emilia earthquake has highlighted the important vulnerability of masonry spires at the top of bell towers of churches. Indeed, almost half of those in the epicentral area have shown a typical damage mechanism consisting in the shear sliding and overturning of the top of the spire. Given the recurrence of this phenomenon, the present paper tries to provide a contribution to the comprehension of the seismic behaviour of the spires through the numerical analysis of three case studies. In particular, the work analyses the spires of the churches of San Nicola di Bari in Cortile, near Carpi (MO); Sant'Egidio in Cavezzo (MO), and Sant'Agostino in Sant'Agostino (FE). The numerical models of these masonry structures were made using Abaqus Finite Element software. After the creation of the three-dimensional geometric models, a first nonlinear static analysis of the entire bell tower was performed adopting for masonry the Abaqus “concrete damage plasticity model”. Once the stability of the bell tower was verified for dead loads, the non-linear time-step dynamic analysis was faced. This required the definition of the seismic input at the base of the tower, through the accelerograms recorded by the closest stations. The nonlinear dynamic analysis of the global model of the bell tower provided the floor response spectra at the base and at the top of the spire. Indeed the comparison between spectra at the ground and at the top highlights the filter effect of the stem of the bell tower with a significant increase in accelerations at the top. This effect may explain the widespread damage observed at the top of the spires. Eventually, three different non-invasive intervention techniques were proposed in compliance with the principles of restoration and were modelled to compare their behaviour.


2004 ◽  
Vol 20 (2) ◽  
pp. 377-394 ◽  
Author(s):  
Sergio Lagomarsino ◽  
Stefano Podestà

This paper describes a new methodology used to assess seismic damage in the churches of Umbria and the Marches, which is based on 18 indicators, each representative of a possible collapse mechanism for a macroelement. The subdivision of the church into macroelements consists of the identification of architectonic elements in which the seismic behavior is almost independent from the rest of the structure (façade, apse, dome, bell tower, etc.). For each macroelement, by considering its typology and connection to the rest of the church, it is possible to identify the damage modes and the collapse mechanisms. During inspection operations, the surveyors must indicate: (a) the actual macroelements; (b) the damage level; and (c) the vulnerability of the church to that mechanism, related to some specific details of construction. From these data a damage score is defined, which is a number from 0 to 1, obtained as a normalized mean of the damage grades in each mechanism. The analysis of the collected data (more than 1,000 churches in Umbria) allows the definition of the correlation between macroseismic intensity and damage.


2015 ◽  
Vol 9 (2) ◽  
pp. 339-352 ◽  
Author(s):  
Adolfo Preciado ◽  
Gianni Bartoli ◽  
Harald Budelmann

2014 ◽  
Vol 12 (6) ◽  
pp. 2531-2556 ◽  
Author(s):  
Barbara Pintucchi ◽  
Nicola Zani

2014 ◽  
Vol 19 (3) ◽  
pp. 698-709 ◽  
Author(s):  
Sung Gook Cho ◽  
Woong-Ki Park ◽  
Gi-Hwan So ◽  
Seong-Tae Yi ◽  
Dookie Kim

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 667
Author(s):  
Nicola Chieffo ◽  
Marco Fasan ◽  
Fabio Romanelli ◽  
Antonio Formisano ◽  
Giovanni Mochi

The current paper aims at investigating the seismic capacity of a masonry building aggregate in the historical centre of Mirandola based on a reliable ground motion simulation procedure. The examined clustered building is composed of eleven structural units (SUs) mutually interconnected to each other, which are made of brick walls and are characterized by wooden floors poorly connected to the vertical structures. Non-linear static analyses are performed by adopting the 3Muri software to characterize the seismic capacity of both the entire aggregate and the individual SUs. In this framework, a multi-scenario physics-based approach is considered for the definition of the seismic input in terms of broadband seismic signals inclusive of source and site effects. Finally, the incidence of the seismic input variability is discussed for the prediction of the global capacity response of the case study building.


Sign in / Sign up

Export Citation Format

Share Document