scholarly journals A Raman Spectroscopic and Computational Study of New Aromatic Pyrimidine-Based Halogen Bond Acceptors

Inorganics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 119 ◽  
Author(s):  
Hardin ◽  
Ellington ◽  
Nguyen ◽  
Rheingold ◽  
Tschumper ◽  
...  

Two new aromatic pyrimidine-based derivatives designed specifically for halogen bond directed self-assembly are investigated through a combination of high-resolution Raman spectroscopy, X-ray crystallography, and computational quantum chemistry. The vibrational frequencies of these new molecular building blocks, pyrimidine capped with furan (PrmF) and thiophene (PrmT), are compared to those previously assigned for pyrimidine (Prm). The modifications affect only a select few of the normal modes of Prm, most noticeably its signature ring breathing mode, ν1. Structural analyses afforded by X-ray crystallography, and computed interaction energies from density functional theory computations indicate that, although weak hydrogen bonding (C–H···O or C–H···N interactions) is present in these pyrimidine-based solid-state co-crystals, halogen bonding and π-stacking interactions play more dominant roles in driving their molecular-assembly.

CrystEngComm ◽  
2019 ◽  
Vol 21 (20) ◽  
pp. 3151-3157 ◽  
Author(s):  
Sarah N. Johnson ◽  
Thomas L. Ellington ◽  
Duong T. Ngo ◽  
Jorge L. Nevarez ◽  
Nicholas Sparks ◽  
...  

One co-crystal structure characterized to identify and quantify various non-covalent interactions with spectroscopy, X-ray crystallography and density functional theory computations.


RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 82544-82548 ◽  
Author(s):  
Jamey Wilson ◽  
Jon Steven Dal Williams ◽  
Chesney Petkovsek ◽  
Peyton Reves ◽  
Jonah W. Jurss ◽  
...  

The use of a thiophene-based building block (Pyr-T) to achieve a supramolecular assembly driven by halogen bonding (XB) is described. X-ray crystallography, NMR, Raman spectroscopy, and computational chemistry afford evidence of strong XB and π–π stacking.


2020 ◽  
Author(s):  
Emer Foyle ◽  
Nicholas White

<div>In this work four new tripodal tris(halopyridinium) receptors containing potentially halogen</div><div>bonding groups were prepared. The ability of the receptors to bind anions in competitive</div><div>CD<sub>3</sub>CN/d<sub>6</sub>-DMSO was studied using <sup>1</sup>H NMR titration experiments, which revealed that the</div><div>receptors bind chloride anions more strongly than more basic acetate or other halide ions.</div><div>The solid state self–assembly of the tripodal receptors with halide anions was investigated by</div><div>X-ray crystallography. The nature of the structures was dependent on the choice of halide</div><div>anion, as well as the crystallisation solvent. Halogen bond lengths as short as 80% of the sum</div><div>of the van der Waals radii were observed, which is shorter than any halogen bonds involving</div><div>halopyridinium receptors in the Cambridge Structural Database.</div>


2020 ◽  
Author(s):  
Emer Foyle ◽  
Nicholas White

<div>In this work four new tripodal tris(halopyridinium) receptors containing potentially halogen</div><div>bonding groups were prepared. The ability of the receptors to bind anions in competitive</div><div>CD<sub>3</sub>CN/d<sub>6</sub>-DMSO was studied using <sup>1</sup>H NMR titration experiments, which revealed that the</div><div>receptors bind chloride anions more strongly than more basic acetate or other halide ions.</div><div>The solid state self–assembly of the tripodal receptors with halide anions was investigated by</div><div>X-ray crystallography. The nature of the structures was dependent on the choice of halide</div><div>anion, as well as the crystallisation solvent. Halogen bond lengths as short as 80% of the sum</div><div>of the van der Waals radii were observed, which is shorter than any halogen bonds involving</div><div>halopyridinium receptors in the Cambridge Structural Database.</div>


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Fatih Şen ◽  
Ramazan Şahin ◽  
Muharrem Dinçer ◽  
Ömer Andaç ◽  
Murat Taş

The paper presents a combined experimental and computational study of hexa(1-vinylimidazole)Ni(II) perchlorate complex. The complex was prepared in the laboratory and crystallized in the monoclinic space group P21/n with a=8.442(5), b=13.686(8), c=16.041(9) Å, α=γ=90, β=96.638(5), and Z=1. The complex has been characterized structurally (by single-crystal X-Ray diffraction) and its molecular structure in the ground state has been calculated using the density functional theory (DFT) methods with 6-31G(d) and LanL2DZ basis sets. Thermal behaviour and stability of the complex were studied by TGA/DTA analyses. Besides, the nonlinear optical effects (NLO), molecular electrostatic potential (MEP), frontier molecular orbitals (FMO), and the Mulliken charge distribution were investigated theoretically.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 798
Author(s):  
Iñigo Iribarren ◽  
Goar Sánchez-Sanz ◽  
Cristina Trujillo

A computational study of the iodide discrimination by different neutral and cationic iodotriazole halogen bonding hosts was carried out by means of Density Functional Theory. The importance of the size of the scaffold was highlighted and its impact observed in the binding energies and intermolecular X⋯I distances. Larger scaffolds were found to reduce the electronic repulsion and increase the overlap between the halide electron lone pair and the corresponding I-C antibonding orbital, increasing the halogen bonding interactions. Additionally, the planarity plays an important role within the interaction, and can be tuned using hydroxyl to perform intramolecular hydrogen bonds (IMHB) between the scaffold and the halogen atoms. Structures with IMHB exhibit stronger halogen bond interactions, as evidenced by the shorter intramolecular distances, larger electron density values at the bond critical point and more negative binding energies.


2019 ◽  
Author(s):  
Jyoti Rani ◽  
Hatem M. Titi ◽  
Ranjan Patra

<p>We demonstrate herein a computational study probing the influence of metalloporphyrin ring current directionality on intermolecular halogen bonding (XB) during supramolecular self-assembly. The results demonstrate that porphyrin ring current can activate or deactivate halogen bonding interactions, an essential superamolecular driving force.</p>


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2370
Author(s):  
Nikola Bedeković ◽  
Valentina Martinez ◽  
Edi Topić ◽  
Vladimir Stilinović ◽  
Dominik Cinčić

In this work, we explore the halogen-bonded cocrystallization potential of cobaloxime complexes in the synthesis of cocrystals with perhalogenated benzenes. We demonstrate a strategy for synthesizing halogen-bonded metal–organic cocrystals by utilizing cobaloximes whose pendant bromide group and oxime oxygen enable halogen bonding. By combining three well-known halogen bond donor molecules differing in binding geometry and composition with three cobaloxime units, we obtained a total of four previously unreported cocrystals. Single crystal X-ray diffraction experiments showed that the majority of obtained cocrystals exhibited the formation of the targeted I···O and I···Br motives. These results illustrate the potential of cobaloximes as halogen bond acceptors and indicate that this type of halogen bond acceptors may offer a novel route to metal–organic halogen-bonded cocrystals.


2017 ◽  
Vol 73 (3) ◽  
pp. 157-167 ◽  
Author(s):  
Patrick M. J. Szell ◽  
Shaina A. Gabriel ◽  
Russell D. D. Gill ◽  
Shirley Y. H. Wan ◽  
Bulat Gabidullin ◽  
...  

Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P21/c space group: acridine–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C13H9N, 1,10-phenanthroline–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C12H8N2, and 2,3,5,6-tetramethylpyrazine–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C8H12N2. 13C and 19F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19F to 13C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13C and 19F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.


Author(s):  
Milos Budesinsky ◽  
Ivana Cisarova ◽  
Frans Borremans ◽  
Jose C. Martins ◽  
Ewald Pauwels

Ten new crystal structures of cis and trans bicyclic diketopiperazines (DKPs) of thia-pipecolic acid (with sulfur in the β, γ or δ position) or thia-proline (with sulfur in the β or γ position) and N-methyl phenylalanine [(NMe)Phe]: cyclo[(β-S)Pip-(NMe)Phe], cyclo[(γ-S)Pip-(NMe)Phe], cyclo[(δ-S)Pip-(NMe)Phe], cyclo[(β-S)Pro-(NMe)Phe] and cyclo[(γ-S)Pro-(NMe)Phe] were determined with X-ray crystallography. Density functional theory calculations of these molecules in the gas phase succeed in reproducing the observed molecular conformations in the crystal remarkably well. This illustrates the weak to moderate impact of intermolecular packing forces in the absence of classical N—H...O hydrogen bonds. The effect of sulfur on the geometry of the DKP ring and details of amide bond non-planarity are discussed. Molecular flexibility of the DKP ring, as estimated from the calculated deformation energies of its endocyclic ring torsion angles, is not in general the decisive factor for the occurrence of multiple symmetry independent molecules in the unit cell (Z′ > 1), though in some cases a correlation is observed.


Sign in / Sign up

Export Citation Format

Share Document