scholarly journals The Effects of Functional Groups and Missing Linkers on the Adsorption Capacity of Aromatic Hydrocarbons in UiO-66 Thin Films

Inorganics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jennifer Shankwitz ◽  
Daniel Speed ◽  
Dillon Sinanan ◽  
Greg Szulczewski

The adsorption of benzene, toluene, ethylbenzene, and xylene isomers, also known as BTEX, from the gas phase into porous thin films of the metal–organic framework UiO-66-X, where X = H, NH2, and NO2, was measured to quantify adsorption capacity. The thin films were grown by a vapor-conversion method onto Au-coated quartz microbalance crystals. The MOF thin films were characterized by IR and Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The thin films were activated by heating under high vacuum and exposed to each gas to calculate the Henry’s constant. The results demonstrate that the functional groups in the organic linker and missing-linkers both play important roles in the adsorption capacity. Several trends can be observed in the data. First, all the compounds in the BTEX family have lower Henry’s constants in the UiO-66-H films compared to the UiO-66-NH2 and UiO-66-NO2 films, which can largely be attributed to the absence of a functional group on the linker. Second, at 25 °C, the Henry’s constants for all the BTEX compounds in UiO-66-NO2 films are larger than UiO-66-NH2 films. Third, the role of missing linkers is addressed by comparing the measured adsorption capacity to ideal pore filling. The results show that the UiO-66-H films are the most defect-free and the UiO-66-NO2 films have the most missing linker defects.

1992 ◽  
Vol 270 ◽  
Author(s):  
Haojie Yuan ◽  
R. Stanley Williams

ABSTRACTThin films of pure germanium-carbon alloys (GexC1−x with x ≈ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) have been grown on Si(100) and A12O3 (0001) substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray θ-2θ diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00eV to 0.85eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples has a bonding configuration that is a mixture of sp2 and sp3 hybridizations.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


2020 ◽  
Vol 9 (3) ◽  
pp. 9-14
Author(s):  
Hao Pham Van ◽  
Linh Ha Xuan ◽  
Oanh Phung Thi ◽  
Hong Phan Ngoc ◽  
Huy Nguyen Nhat ◽  
...  

This report presents the effect of synthesis conditions on the synthesis of graphene nanosheets via electrochemical exfoliation method for adsorbing methylene blue from aqueous solution. Oxygen-containing functional groups and defects in the material were characterized by Raman and X-ray photoelectron spectroscopy (XPS). As a result, by using voltage of 15 V, (NH4)2SO4 (5%, 250 mL) and KOH (7.5%, 250 mL), the obtained material showed the highest MB adsorption capacity due to the high densities of oxygen-containing groups and defects comparison to other conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Pham Dinh Du ◽  
Huynh Thi Minh Thanh ◽  
Thuy Chau To ◽  
Ho Sy Thang ◽  
Mai Xuan Tinh ◽  
...  

In the present paper, the synthesis of metal-organic framework MIL-101 and its application in the photocatalytic degradation of Remazol Black B (RBB) dye have been demonstrated. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption isotherms at 77 K. It was found that MIL-101 synthesized under optimal conditions exhibited high crystallinity and specific surface area (3360 m2·g-1). The obtained MIL-101 possessed high stability in water for 14 days and several solvents (benzene, ethanol, and water at boiling temperature). Its catalytic activities were evaluated by measuring the degradation of RBB in an aqueous solution under UV radiation. The findings show that MIL-101 was a heterogeneous photocatalyst in the degradation reaction of RBB. The mechanism of photocatalysis was considered to be achieved by the electron transfer from photoexcited organic ligands to metallic clusters in MIL-101. The kinetics of photocatalytic degradation reaction were analyzed by using the initial rate method and Langmuir-Hinshelwood model. The MIL-101 photocatalyst exhibited excellent catalytic recyclability and stability and can be a potential catalyst for the treatment of organic pollutants in aqueous solutions.


2015 ◽  
Vol 1131 ◽  
pp. 35-38
Author(s):  
Navaphun Kayunkid ◽  
Annop Chanhom ◽  
Chaloempol Saributr ◽  
Adirek Rangkasikorn ◽  
Jiti Nukeaw

This research is related to growth and characterizations of indium-doped pentacene thin films as a novel hybrid material. Doped films were prepared by thermal co-evaporation under high vacuum. The doping concentration was varied from 0% to 50% by controlling the different deposition rate between these two materials while the total thickness was fixed at 100 nm. The hybrid thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD) and UV-Visible spectroscopy to reveal the physical and optical properties. Moreover, the electrical properties of ITO/indium-doped-pentacene/Al devices i.e. charge mobility and carrier concentration were determined by considering the relationship between current-voltage and capacitance-voltage. AFM results identify that doping of indium into pentacene has an effect on surface properties of doped films i.e. the increase of surface grain size. XRD results indicate that doping of metal into pentacene has an effect on preferential orientation of pentacene’s crystalline domains. UV-Vis spectroscopy results show evolution of absorbance at photon energy higher than 2.7 eV corresponding to absorption from oxide of indium formed in the films. Electrical measurements exhibit higher conductivity in doped films resulting from increment of both charge carrier mobility and carrier concentration. Furthermore, chemical interactions taken place inside the doped films were investigated by x-ray photoelectron spectroscopy (XPS) in order to complete the remaining questions i.e. how do indium atoms interact with the neighbor molecules?, what is the origin of the absorption at E > 2.7 eV? Further results and discussions will be presented in the publication.


2017 ◽  
Vol 5 (26) ◽  
pp. 13665-13673 ◽  
Author(s):  
Suttipong Wannapaiboon ◽  
Kenji Sumida ◽  
Katharina Dilchert ◽  
Min Tu ◽  
Susumu Kitagawa ◽  
...  

Addition of a modulator in the LPE process enhances MOF thin film properties by boosting their crystallinity, orientation uniformity, and adsorption capacity.


2019 ◽  
Vol 79 (12) ◽  
pp. 2357-2365 ◽  
Author(s):  
Huaisu Guo ◽  
Weilin Guo ◽  
Yang Liu ◽  
Xiaohua Ren

Abstract In this work, quinone-modified metal-organic framework MIL-101(Fe)(Q-MIL-101(Fe)), as a novel heterogeneous Fenton-like catalyst, was synthesized for the activation of persulfate (PS) to remove bisphenol A (BPA). The synthetic Q-MIL-101(Fe) was characterized via X-ray diffraction, scanning electron microscope, Fourier transform infrared, electrochemical impedance spectroscopy, cyclic voltammetry and X-ray photoelectron spectroscopy. As compared to the pure MIL-101(Fe), Q-MIL-101(Fe) displayed better catalytic activity and reusability. The results manifested that the Q-MIL-101(Fe) kept quinone units, which successfully promoted the redox cycling of Fe3+/Fe2+ and enhanced the removal efficiency. In addition, the reaction factors of Q-MIL-101(Fe) were studied (e.g. pH, catalyst dosage, PS concentration and temperature), showing that the optimum conditions were [catalyst] = 0.2 g/L, [BPA] = 60 mg/L, [PS] = 4 mmol/L, pH = 6.79, temperature = 25 °C. On the basis of these findings, the probable mechanism on the heterogeneous activation of PS by Q-MIL-101(Fe) was proposed.


2019 ◽  
Vol 75 (8) ◽  
pp. 1053-1059 ◽  
Author(s):  
Lin-Lu Qian ◽  
Zhi-Xiang Wang ◽  
Hai-Xin Tian ◽  
Min Li ◽  
Bao-Long Li ◽  
...  

Metal–organic frameworks (MOFs) have attracted much interest in the fields of gas separation and storage, catalysis synthesis, nonlinear optics, sensors, luminescence, magnetism, photocatalysis gradation and crystal engineering because of their diverse properties and intriguing topologies. A Cu–MOF, namely poly[[(μ2-succinato-κ2 O:O′){μ2-tris[4-(1,2,4-triazol-1-yl)phenyl]amine-κ2 N:N′}copper(II)] dihydrate], {[Cu(C4H4O4)(C24H18N10)]·2H2O} n or {[Cu(suc)(ttpa)]·2H2O} n , (I), was synthesized by the hydrothermal method using tris[4-(1,2,4-triazol-1-yl)phenyl]amine (ttpa) and succinate (suc2−), and characterized by IR, powder X-ray diffraction (PXRD), luminescence, optical band gap and valence band X-ray photoelectron spectroscopy (VB XPS). Cu–MOF (I) shows a twofold interpenetrating 4-coordinated three-dimensional CdSO4 topology with point symbol {65·8}. It presents good photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) under visible-light irradiation. A photocatalytic mechanism was proposed and confirmed.


Sign in / Sign up

Export Citation Format

Share Document