Growth and Characterizations of Indium-Doped Pentacene Thinfilm Prepared by Thermal Co-Evaporation as a Novel Nanomaterial

2015 ◽  
Vol 1131 ◽  
pp. 35-38
Author(s):  
Navaphun Kayunkid ◽  
Annop Chanhom ◽  
Chaloempol Saributr ◽  
Adirek Rangkasikorn ◽  
Jiti Nukeaw

This research is related to growth and characterizations of indium-doped pentacene thin films as a novel hybrid material. Doped films were prepared by thermal co-evaporation under high vacuum. The doping concentration was varied from 0% to 50% by controlling the different deposition rate between these two materials while the total thickness was fixed at 100 nm. The hybrid thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD) and UV-Visible spectroscopy to reveal the physical and optical properties. Moreover, the electrical properties of ITO/indium-doped-pentacene/Al devices i.e. charge mobility and carrier concentration were determined by considering the relationship between current-voltage and capacitance-voltage. AFM results identify that doping of indium into pentacene has an effect on surface properties of doped films i.e. the increase of surface grain size. XRD results indicate that doping of metal into pentacene has an effect on preferential orientation of pentacene’s crystalline domains. UV-Vis spectroscopy results show evolution of absorbance at photon energy higher than 2.7 eV corresponding to absorption from oxide of indium formed in the films. Electrical measurements exhibit higher conductivity in doped films resulting from increment of both charge carrier mobility and carrier concentration. Furthermore, chemical interactions taken place inside the doped films were investigated by x-ray photoelectron spectroscopy (XPS) in order to complete the remaining questions i.e. how do indium atoms interact with the neighbor molecules?, what is the origin of the absorption at E > 2.7 eV? Further results and discussions will be presented in the publication.

2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


1992 ◽  
Vol 270 ◽  
Author(s):  
Haojie Yuan ◽  
R. Stanley Williams

ABSTRACTThin films of pure germanium-carbon alloys (GexC1−x with x ≈ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) have been grown on Si(100) and A12O3 (0001) substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray θ-2θ diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00eV to 0.85eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples has a bonding configuration that is a mixture of sp2 and sp3 hybridizations.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2006 ◽  
Vol 10 (10) ◽  
pp. 1179-1189 ◽  
Author(s):  
Christian Kelting ◽  
Wilfried Michaelis ◽  
Andreas Hirth ◽  
Dieter Wöhrle ◽  
Derck Schlettwein

Films of organic polymers were prepared and investigated as insulating layers in contact with phthalocyanines as organic semiconductors for use in organic field effect transistors. The polymer films were obtained either by a high-vacuum technique based on the thermal decomposition of polymers and polymerization of the fragments on a substrate, by the spin-coating of polymer solutions or by the cross-linking of spin-coated precursors. Poly(vinylchloride), poly(vinylidenefluoride), poly(acrylonitrile), poly(methylmethacrylate), poly( N -vinylpyrrolidone), poly(styrene), poly(4-vinylpyridine), poly( N -vinylcarbazole) and a polyimide were used as polymers. The film growth was studied by mass spectrometry and infrared spectroscopy. Electrochemical measurements by cyclic voltammetry served to analyze the properties of the polymer films. The morphology was determined by atomic force microscopy. Interactions of the films with phthalocyaninatozinc ( PcZn ) was analyzed for co-evaporated PcZn in the polymer films, to probe the chemical compatibility of the methods. Subsequently, evaporated PcZn or hexadecafluorophthalocyaninato-oxo-vanadium ( F 16 PcVO ) thin films were studied in detail by UV-vis spectroscopy and by electrical measurements to investigate interface formation, intermolecular coupling and electrical conduction in such films. The applicability of the different polymers as dielectric layers in organic field effect transistors, with phthalocyanines as the active semiconductor thin films, is discussed, based on their dielectric behavior and observed growth characteristics.


Holzforschung ◽  
2007 ◽  
Vol 61 (5) ◽  
pp. 523-527 ◽  
Author(s):  
Lothar Klarhöfer ◽  
Florian Voigts ◽  
Dominik Schwendt ◽  
Burkhard Roos ◽  
Wolfgang Viöl ◽  
...  

Abstract Metastable induced electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were applied to study the interaction of Ti metal atoms with spruce surfaces. Spruce surfaces were produced by planing splints from a spruce bar. Ti atoms were adsorbed from a metal evaporator under ultra-high vacuum conditions. The amount adsorbed corresponds to 10 monolayer equivalents. Strong interactions between the spruce surface and metals atoms occurred. Impinging Ti atoms were oxidized by the spruce surface. No Ti agglomeration or particle formation was observed. The surface was smoothed by the Ti applied and was completely covered by a titanium oxide film.


2010 ◽  
Vol 1250 ◽  
Author(s):  
Xinghua Wang ◽  
Sarjoosing Goolaup ◽  
Peng Ren ◽  
Wen Siang Lew

AbstractThin films of magnetite (Fe3O4) are grown on a single-crystal Si/SiO2 (100) substrate with native oxide using DC reactive sputtering technique at room tempreture (RT) and 300C. The x-ray diffraction(XRD) result shows the thermal energy during deposition enhances the crystallization of the Fe3O4 and x-ray photoelectron spectroscopy confirms the film deposited at 300C is single-phase Fe3O4 while the film deposited at RT is mostly ν-Fe2O3. The electrical measurements show that the resistivity of the Fe3O4 film increases exponentially with decreasing temperature, and exhibit a sharp metal-insulator transition at around 100 K, indicating the Verwey transition feature. The saturation magnetization Ms of Fe3O4 film measured by vibrating sample measurement (VSM) at RT was found to be 445 emu/cm3.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3510
Author(s):  
Lukasz Skowronski ◽  
Arkadiusz Ciesielski ◽  
Aleksandra Olszewska ◽  
Robert Szczesny ◽  
Mieczyslaw Naparty ◽  
...  

Zinc oxide films have been fabricated by the electron beam physical vapour deposition (PVD) technique. The effect of substrate temperature during fabrication and annealing temperature (carried out in ultra high vacuum conditions) has been investigated by means of atomic force microscopy, scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. It was found that the layer deposited at room temperature is composed of Zn and ZnO crystallites with a number of orientations, whereas those grown at 100 and 200 ∘C consist of ZnO grains and exhibit privileged growth direction. Presented results clearly show the influence of ZnO decomposition and segregation of Zn atoms during evaporation and post-deposition annealing on microstructure and optical properties of zinc oxide films.


2006 ◽  
Vol 527-529 ◽  
pp. 673-676 ◽  
Author(s):  
W.Y. Lee ◽  
S. Soubatch ◽  
Ulrich Starke

The atomic structure of the 4H-SiC(11 2 0) surface including possible phase transformations via Si deposition and annealing has been investigated using low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The sample is initially prepared by hydrogen etching before loading into the ultra-high vacuum system. The sample is then out-gassed to remove oxygen from the surface. To explore the existence of ordered surface phases, Si is deposited on the sample at 850°C for 15 minutes followed by a series of sequential annealing steps. Throughout this process, the surface is monitored by LEED, AES and XPS. LEED shows that the surface continuously maintains a (1×1) periodicity. Yet, two unique and distinguishable (1×1) phases can be identified. The changes between these phases are clearly demonstrated by the LEED spot intensities. Simultaneously, the Auger and XPS data show a decrease in Si intensity.


2002 ◽  
Vol 17 (8) ◽  
pp. 1914-1922 ◽  
Author(s):  
S. M. Lee ◽  
T. Ito ◽  
H. Murakami

The morphology and composition of MgO films grown on single-crystalline diamond (100) have been studied. MgO thin films were deposited in the substrate temperature range from room temperature (RT) to 723 K by means of electron beam evaporation using a MgO powder source. Atomic force microscopy images indicated that the film grown at RT without O2 supply was relatively uniform and flat whereas that deposited in oxygen ambient yielded higher growth rates and rough surface morphologies. X-ray photoelectron spectroscopy analyses demonstrate that the MgO film deposited at RT without O2 has the composition closest to that of the stoichiometric MgO and that a thin contaminant layer composed mainly of magnesium peroxide (before etching) or hydroxide (after etching) was unintentionally formed on the film surface, respectively.These results will be discussed in relation to the interaction among the evaporated species and intentionally supplied oxygen molecules at the growth front as well as the interfacial energy between diamond and MgO.


Sign in / Sign up

Export Citation Format

Share Document