scholarly journals Quinone-modified metal-organic frameworks MIL-101(Fe) as heterogeneous catalysts of persulfate activation for degradation of aqueous organic pollutants

2019 ◽  
Vol 79 (12) ◽  
pp. 2357-2365 ◽  
Author(s):  
Huaisu Guo ◽  
Weilin Guo ◽  
Yang Liu ◽  
Xiaohua Ren

Abstract In this work, quinone-modified metal-organic framework MIL-101(Fe)(Q-MIL-101(Fe)), as a novel heterogeneous Fenton-like catalyst, was synthesized for the activation of persulfate (PS) to remove bisphenol A (BPA). The synthetic Q-MIL-101(Fe) was characterized via X-ray diffraction, scanning electron microscope, Fourier transform infrared, electrochemical impedance spectroscopy, cyclic voltammetry and X-ray photoelectron spectroscopy. As compared to the pure MIL-101(Fe), Q-MIL-101(Fe) displayed better catalytic activity and reusability. The results manifested that the Q-MIL-101(Fe) kept quinone units, which successfully promoted the redox cycling of Fe3+/Fe2+ and enhanced the removal efficiency. In addition, the reaction factors of Q-MIL-101(Fe) were studied (e.g. pH, catalyst dosage, PS concentration and temperature), showing that the optimum conditions were [catalyst] = 0.2 g/L, [BPA] = 60 mg/L, [PS] = 4 mmol/L, pH = 6.79, temperature = 25 °C. On the basis of these findings, the probable mechanism on the heterogeneous activation of PS by Q-MIL-101(Fe) was proposed.

2019 ◽  
Vol 75 (8) ◽  
pp. 1053-1059 ◽  
Author(s):  
Lin-Lu Qian ◽  
Zhi-Xiang Wang ◽  
Hai-Xin Tian ◽  
Min Li ◽  
Bao-Long Li ◽  
...  

Metal–organic frameworks (MOFs) have attracted much interest in the fields of gas separation and storage, catalysis synthesis, nonlinear optics, sensors, luminescence, magnetism, photocatalysis gradation and crystal engineering because of their diverse properties and intriguing topologies. A Cu–MOF, namely poly[[(μ2-succinato-κ2 O:O′){μ2-tris[4-(1,2,4-triazol-1-yl)phenyl]amine-κ2 N:N′}copper(II)] dihydrate], {[Cu(C4H4O4)(C24H18N10)]·2H2O} n or {[Cu(suc)(ttpa)]·2H2O} n , (I), was synthesized by the hydrothermal method using tris[4-(1,2,4-triazol-1-yl)phenyl]amine (ttpa) and succinate (suc2−), and characterized by IR, powder X-ray diffraction (PXRD), luminescence, optical band gap and valence band X-ray photoelectron spectroscopy (VB XPS). Cu–MOF (I) shows a twofold interpenetrating 4-coordinated three-dimensional CdSO4 topology with point symbol {65·8}. It presents good photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) under visible-light irradiation. A photocatalytic mechanism was proposed and confirmed.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850030 ◽  
Author(s):  
Jujie Luo ◽  
Xing Yang ◽  
Shumin Wang ◽  
Yuhong Bi ◽  
Amit Nautiyal ◽  
...  

The metal organic framework (MOF) [Ni3(HCOO)6] was synthesized via the simple and fast microwave method, and the effect of irradiation power on crystallinity of synthesized Ni-based MOF was studied. The samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized Ni-based MOF was electrochemically characterized by using galvanostatic charge–discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The synthesized MOF showed the highest specific capacitance of 1196.2[Formula: see text]F/g at 1[Formula: see text]A/g with excellent cyclability (86.04% capacitance retention after 2,000 cycles), thereby demonstrating its potential application in supercapacitors.


NANO ◽  
2019 ◽  
Vol 14 (01) ◽  
pp. 1950005 ◽  
Author(s):  
Zhongfei Liu ◽  
Jiangtao Yuan ◽  
Hui Zhang ◽  
Kuangwei Xiong ◽  
Shaowei Jin ◽  
...  

In this paper, the MOFs-derived carbonaceous ZnO and RGO (carbonaceous ZnO/RGO) composites have been prepared by the wet chemical method and carbonization process. The as-prepared products are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), Raman spectra, thermogravimetric (TG) analysis and X-ray photoelectron spectroscopy (XPS). The electromagnetic parameters of carbonaceous ZnO/RGO composites are investigated by the vector network analyzer. The results exhibit carbonaceous ZnO/RGO composites have a maximum absorption of [Formula: see text][Formula: see text]dB at 6[Formula: see text]GHz with thickness of 3.5[Formula: see text]mm and the effective absorption (below [Formula: see text][Formula: see text]dB) bandwidth is up to 1.92[Formula: see text]GHz (from 5.28 to 7.2[Formula: see text]GHz). Thus, the carbonaceous ZnO/RGO composites have great potential in the field of electromagnetic wave absorption.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5773
Author(s):  
Aasif Helal ◽  
Muhammed Naeem ◽  
Mohammed Fettouhi ◽  
Md. Hasan Zahir

In this work, we prepared a fluorescein hydrazide-appended Ni(MOF) (Metal–Organic Framework) [Ni3(BTC)2(H2O)3].(DMF)3(H2O)3 composite, FH@Ni(MOF). This composite was well-characterized by PXRD (powder X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy), N2 adsorption isotherm, TGA (thermogravimetric analysis), XPS (X-ray photoelectron spectroscopy), and FESEM (field emission scanning electron microscopy). This composite was then tested with different heavy metals and was found to act as a highly selective and sensitive optical sensor for the Hg2+ ion. It was found that the aqueous emulsion of this composite produces a new peak in absorption at 583 nm, with a chromogenic change to a pink color visible to the naked eye upon binding with Hg2+ ions. In emission, it enhances fluorescence with a fluorogenic change to green fluorescence upon complexation with the Hg2+ ion. The binding constant was found to be 9.4 × 105 M−1, with a detection limit of 0.02 μM or 5 ppb. This sensor was also found to be reversible and could be used for seven consecutive cycles. It was also tested for Hg2+ ion detection in practical water samples from ground water, tap water, and drinking water.


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-732
Author(s):  
Chen Zhang ◽  
Jian-Qing Tao

AbstractA new Cu(II) metal-organic framework, [Cu(L)(OBA)·H2O]n (1) [H2OBA = 4,4′-oxybis(benzoic acid), L = 3,5-di(1H-benzimidazol-1-yl)pyridine] was hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis and single-crystal X-ray diffraction. Complex 1 is a four-connected uni-nodal 2D net with a (44·62) topology which shows an emission centered at λ ∼393 nm upon excitation at λ = 245 nm. Moreover, complex 1 possesses high photocatalytic activities for the decomposition of Rhodamine B (RhB) under UV light irradiation.


2020 ◽  
Vol 75 (4) ◽  
pp. 365-369
Author(s):  
Long Tang ◽  
Yu Pei Fu ◽  
Na Cui ◽  
Ji Jiang Wang ◽  
Xiang Yang Hou ◽  
...  

AbstractA new metal-organic framework, [Pb(hmpcaH)2]n (1), has been hydrothermally synthesized from Pb(OAc)2 · 3H2O and 2-hydroxy-6-methylpyridine-4-carboxylic acid (hmpcaH2; 2), and characterized by IR spectroscopy, elemental and thermogravimetric analysis, and single-crystal X-ray diffraction. In complex 1, each hmpcaH− ligand represents a three-connected node to combine with the hexacoordinated Pb(II) ions, generating a 3D binodal (3,6)-connected ant network. The crystal structure of 2 was determined. The solid-state fluorescence properties of 1 and 2 were investigated.


Langmuir ◽  
2009 ◽  
Vol 25 (6) ◽  
pp. 3618-3626 ◽  
Author(s):  
Stuart R. Miller ◽  
Paul A. Wright ◽  
Thomas Devic ◽  
Christian Serre ◽  
Gérard Férey ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


Sign in / Sign up

Export Citation Format

Share Document