scholarly journals Effects of Diaphorina citri Population Density on Daily Timing of Vibrational Communication Calls: Potential Benefits in Finding Forage

Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 182
Author(s):  
Richard W. Mankin ◽  
Rikin Patel ◽  
Mason Grugnale ◽  
Ethan Jetter

Adult Diaphorina citri (ACP) use visual and chemical cues to locate young citrus flush shoots on which they forage and oviposit, and they use vibrational communication duetting calls as cues to help locate mates. For individual pairs, calling and mating usually peaks between 10:00 and 15:00. To explore whether call rates (calls/h) are affected by interactions with nearby conspecifics, rates were compared in small citrus trees on which either 5 or 25 ACP female and male pairs had been released at 17:00 for later recording from sunrise (06:00) to 22:00. Final ACP locations were noted 40 h after release. Call rates were similar in both treatments during normal mating hours. However, rates were significantly higher for low- than high-density treatments between 06:00 and 10:00, which suggests calling during this period may be affected by conspecific density. Both sexes aggregated on flush at both densities. We discuss the potential that ACP producing calls near sunrise, outside of normal mating hours, might benefit from gains in reproductive fitness in low-density contexts if they call not only to locate mates but also to locate preferred flush—in which case, co-opting of vibrations to disrupt both mating and foraging may be feasible.

2021 ◽  
Vol 13 (8) ◽  
pp. 4280
Author(s):  
Yu Sang Chang ◽  
Sung Jun Jo ◽  
Yoo-Taek Lee ◽  
Yoonji Lee

A large number of articles have documented that as population density of cities increases, car use declines and public transit use rises. These articles had a significant impact of promoting high-density compact urban development to mitigate traffic congestion. Another approach followed by other researchers used the urban scaling model to indicate that traffic congestion increases as population size of cities increases, thus generating a possible contradictory result. Therefore, this study examines the role of both density and population size on traffic congestion in 164 global cities by the use of Stochastic Impacts by Regression on Population, Affluence and Technology model. We divide 164 cities into the two subgroups of 66 low density cities and 98 high density cities for analysis. The findings from the subgroups analysis indicated a clear-cut difference on the critical role of density in low-density cities and the exclusive role of population size in high-density cities. Furthermore, using threshold regression model, 164 cities are divided into the two regions of large and small population cities to determine population scale advantage of traffic congestion. Our findings highlight the importance of including analysis of subgroups based on density and/or population size in future studies of traffic congestion.


Crustaceana ◽  
2015 ◽  
Vol 88 (12-14) ◽  
pp. 1283-1299 ◽  
Author(s):  
Fahmida Wazed Tina ◽  
Mullica Jaroensutasinee ◽  
Krisanadej Jaroensutasinee

We examined the effects of population density on body size and burrow characteristics ofUca bengaliCrane, 1975. We predicted that (1) males in high-density areas (HD) should be larger in size and build higher quality burrows than males in low-density areas (LD), and (2) HD females should be larger in size, but build lower quality burrows than LD females, as HD females can find higher numbers of good quality male burrows around them for breeding and egg incubation. Our results showed that males and females in HD were larger in size than those in LD. Since HD males were larger in size, they built higher quality burrows than males in LD. On the other hand, even though LD females were smaller in size than HD ones, they built higher quality burrows than HD females. Our results thus indicate that density effects both body size and burrow characteristics.


Weed Science ◽  
2017 ◽  
Vol 65 (4) ◽  
pp. 491-503 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy

Knowledge of Palmer amaranth demographics and biology is essential for the development and implementation of weed management strategies. A field experiment was conducted to investigate the effects of Palmer amaranth density on seedling mortality, flowering initiation, and flowering progress throughout the growing season and biomass production and fecundity in wide-row soybean. The experimental design was a randomized complete block design with three levels of Palmer amaranth density-clusters: high, medium, and low. Palmer amaranth mortality rate was greater at high Palmer amaranth population density-cluster, reaching a peak within 30 to 40 d after Palmer amaranth emergence (DAE) (0.55 and 0.80 for 2014 and 2015, respectively), in comparison with mortality rate at medium and lower density-clusters. Likewise, as Palmer amaranth density increased, biomass and seed production per unit area of the weed also increased. Biomass production at the high density-cluster in 2014 was 664.7 g m−2compared with 542.9 and 422.1 g m−2at medium and low density-clusters, respectively. Similarly, biomass production at high density-cluster in 2015 was 100.6 g m−2compared with 37.3 and 34.2 at medium and low density-clusters, respectively. In addition, seeds produced at high density-cluster were 1.5 million and 245,400 seeds m−2for 2014 and 2015, respectively. Seed production was reduced by 29% and 54% in 2014 and by 65% and 75% in 2015 at medium and low density-clusters, respectively. Earlier flowering initiation (i.e., between 30 to 40 DAE) occurred in higher Palmer amaranth density-clusters, indicating a trade-off between reproduction and survival at high densities and more stressed environments for species survival. Palmer amaranth male-to-female sex ratio was greater at high densities, 1.3 and 1.9, compared with lower densities of 0.6 to 0.7 and 0.7 to 0.8 in 2014 and 2015, respectively. The plasticity of Palmer amaranth population and population-structure regulation, vegetative growth, and flowering shifts at various levels of intraspecific competition (i.e., high vs. low population density-clusters) and the trade-off between these biological transitions merits further investigation.


2000 ◽  
Vol 182 (15) ◽  
pp. 4158-4164 ◽  
Author(s):  
XueQiao Liu ◽  
Christina Ng ◽  
Thomas Ferenci

ABSTRACT The scope of population density effects was investigated in steady-state continuous cultures of Escherichia coli in the absence of complications caused by transient environmental conditions and growth rates. Four distinct bacterial properties reflecting major regulatory and physiological circuits were analyzed. The metabolome profile of bacteria growing at high density contained major differences from low-density cultures. The 10-fold-elevated level of trehalose at higher densities pointed to the increased role of the RpoS sigma factor, which controls trehalose synthesis genes as well as the general stress response. There was an eightfold difference in RpoS levels between bacteria grown at 108 and at 109cells/ml. In contrast, the cellular content of the DNA binding protein H-NS, controlling many genes in concert with RpoS, was decreased by high density. Since H-NS and RpoS also influence porin gene expression, the influence of population density on the intricate regulation of outer membrane composition was also investigated. High culture densities were found to strongly repress ompF porin transcription, with a sharp threshold at a density of 4.4 × 108 cells/ml, while increasing the proportion of OmpC in the outer membrane. The density-dependent regulation ofompF was maintained in rpoS or hnsmutants and so was independent of these regulators. The consistently dramatic changes indicate that actively growing, high-density cultures are at least as differentiated from low-density cultures as are exponential- from stationary-phase bacteria.


1968 ◽  
Vol 19 (2) ◽  
pp. 191 ◽  
Author(s):  
DW Puckridge

The effect of changes in the light environment of wheat plants at different stages in their growth was examined by growing single plants in tubes and changing the spacing of the tubes (population density) during development. Individual leaves on the main stem were reduced in both area and weight by transfer of the plants from high density to low density during the period from initiation of growth of the leaf on the apex to its appearance above the sheath. The number of fertile spikelets per ear was increased by transfer to low density in the period between formation of double ridges and ear emergence. It is suggested that the potential for grain yield of a wheat ear is affected by the light environment of the shoot at any stage before ear emergence.


1996 ◽  
Vol 270 (3) ◽  
pp. R571-R577 ◽  
Author(s):  
R. J. Nelson ◽  
J. B. Fine ◽  
G. E. Demas ◽  
C. A. Moffatt

Seasonal breeding of rodents is often associated with changes in adrenal function; altered adrenal function could account, in part, for seasonal changes in immune function and, ultimately, influence seasonal fluctuations in survival. Animals commonly monitor the annual change in photoperiod to ascertain the time of year and to make appropriate seasonal adjustments in physiology and behavior. Several extrinsic factors affect reproductive responsiveness to photoperiod. The interaction between population density and reproductive and adrenal responsiveness to photoperiod was assessed in the present experiment. Adult male prairie voles (Microtus ochrogaster) were maintained individually for 10 wk in long [light:dark (LD) 16:8] or short (LD 8:16) photoperiods in rooms with either high (10.96 animals/m3) or low (0.18 animals/m3) population densities. Regardless of population density, short-day voles regressed the size of their reproductive organs; reproductive organ masses were higher in long-day voles housed in high-density compared with low-density rooms. Paired adrenal masses were reduced in short-day voles, but were unaffected by population density; serum corticosterone concentrations were significantly elevated in short-day compared with long-day animals. In both photoperiods, basal blood corticosterone levels were higher in voles from low-density compared with high-density rooms. Splenic masses were unaffected by day length, but were elevated among high-density animals. Similarly, serum immunoglobulin (IgG) levels were elevated among high-density animals. These results suggest that population density per se, in the absence of behavioral interactions, can affect reproductive size, and possibly function, in long-day conditions, and that prairie voles, which are highly social, exhibit higher corticosterone and lower IgG levels in low compared with high densities. These results may be important in understanding arvicoline population fluctuations, as well as improving animal husbandry practices in the lab.


Author(s):  
L. Mulestagno ◽  
J.C. Holzer ◽  
P. Fraundorf

Due to the wealth of information, both analytical and structural that can be obtained from it TEM always has been a favorite tool for the analysis of process-induced defects in semiconductor wafers. The only major disadvantage has always been, that the volume under study in the TEM is relatively small, making it difficult to locate low density defects, and sample preparation is a somewhat lengthy procedure. This problem has been somewhat alleviated by the availability of efficient low angle milling.Using a PIPS® variable angle ion -mill, manufactured by Gatan, we have been consistently obtaining planar specimens with a high quality thin area in excess of 5 × 104 μm2 in about half an hour (milling time), which has made it possible to locate defects at lower densities, or, for defects of relatively high density, obtain information which is statistically more significant (table 1).


1975 ◽  
Vol 33 (02) ◽  
pp. 256-270
Author(s):  
R. M Howell ◽  
S. L. M Deacon

SummaryElectron microscopy and particle electrophoresis were found to be complementary techniques with which to complete the physical data from an earlier study on barium sulphates used to adsorb clotting factors from serum. The differences revealed by scanning electron microscopy (S. E. M.) in the physical shape of low and high density grades of barium sulphate particles appear to be of greater significance than charge as expressed by electrophoretic mobility, in determining whether or not precursor or preformed factor Xa is eluted.This conclusion was based on the finding that at pH values close to 7, where the adsorption from serum occurs, all samples with the exception of natural barytes were uncharged. However as the high-density, or soil-grade, was found by S. E. M. to consist of large solid crystals it was suggested that this shape might induce activation of factor X as a result of partial denaturation and consequent unfolding of the adsorbed protein. In contrast, uptake of protein into the centre of the porous aggregates revealed by S. E. M. pictures of low-density or X-ray grade barium sulphate may afford protection against denaturation and exposure of the enzyme site.The porous nature of particles of low-density barium sulphate compared with the solid crystalline forms of other grades accounts not only for its lower bulk density but also for its greater surface/gram ratio which is reflected by an ability to adsorb more protein from serum.Neither technique produced evidence from any of the samples to indicate the presence of stabilising agents sometimes used to coat particles in barium meals.


Sign in / Sign up

Export Citation Format

Share Document