scholarly journals Landscape Effects on the Abundance of Apolygus lucorum in Cotton Fields

Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 185
Author(s):  
Minlong Li ◽  
Long Yang ◽  
Yunfei Pan ◽  
Qian Zhang ◽  
Haibin Yuan ◽  
...  

Resource-continuity over spatial and temporal scales plays a central role in the population abundance of polyphagous pests in an agricultural landscape. Shifts in the agricultural land use in a region may alter the configuration of key resource habitats, resulting in drastic changes in pest abundance. Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is a pest of cotton in northern China that has become more serious in recent years following changes in the region’s cropping systems. However, no evidence from the landscape perspective has yet been gathered to account for the increasing population of A. lucorum in China. In this study, we investigated the effects of landscape composition on the population abundance of A. lucorum in cotton fields in July and August of 2016, respectively. We found that increased acreage planted to cotton actually had a negative effect on the abundance of A. lucorum, while planting of other crops (e.g., vegetables, soybean, and peanut) was positively associated with the mirid’s population abundance in cotton fields. Maize production only displayed a positive effect on population abundance in August. Our results suggested that the decreasing of cotton area may weaken the trap-kill effect on A. lucorum, and the extension of other crops and maize potentially enhance the continuity of resources needed by A. lucorum. Combined effects of these two aspects may promote an increased population density of A. lucorum in the agriculture district. In the future, when possible, management strategies in key regional crops should be coordinated to reduce resource continuity at the landscape or area-wide scale to lower A. lucorum populations across multiple crops.

2019 ◽  
Vol 49 (1) ◽  
pp. 197-202
Author(s):  
Nathaniel Ryan Flicker ◽  
Katja Poveda ◽  
Heather Grab

Abstract Industrial hemp, Cannabis sativa (Cannabaceae), is a newly introduced and rapidly expanding crop in the American agricultural landscape. As an exclusively wind-pollinated crop, hemp lacks nectar but produces an abundance of pollen during a period of floral dearth in agricultural landscapes. These pollen resources are attractive to a range of bee species but the diversity of floral visitors and their use of hemp across a range of agricultural contexts remains unclear. We made repeated sweep net collections of bees visiting hemp flowers on farms in New York, which varied in both landscape context and phenotypic traits of hemp varieties. We identified all bee visitors to the species level and found that hemp supported 16 different bee species. Landscape simplification negatively impacted the abundance of bees visiting hemp flowers but did not affect the species richness of the community. Plant height, on the other hand, was strongly correlated with bee species richness and abundance for hemp plots with taller varieties attracting a broader diversity of bee species. Because of its temporally unique flowering phenology, hemp has the potential to provide a critical nutritional resource to a diverse community of bees during a period of floral scarcity and thereby may help to sustain agroecosystem-wide pollination services for other crops in the landscape. As cultivation of hemp increases, growers, land managers, and policy makers should consider its value in supporting bee communities and take its attractiveness to bees into account when developing pest management strategies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Williams Agyemang-Duah ◽  
Joseph Oduro Appiah ◽  
Dina Adei

Abstract Background Land use practices are noted to contribute to changes in forest landscape composition. However, whereas studies have reported the intermix of land uses and forest patches and measured the direct impacts of land uses on forest patches, little is known regarding the spatially-explicit association between the most recent forest patches and land use footprints in protected areas. In this study, we use methods from GIS, remote sensing, and statistics to model the spatial relationship between footprints of land uses and patches of forest cover by drawing on geospatial data from the Atewa range forest reserve (ARFR). Results The study finds that forest patches that are within 1 km from agricultural land use footprints (AOR = 86.625, C.I. 18.057–415.563, P = 0.000), logging sites (AOR = 55.909, C.I. 12.032–259.804, P = 0.000), mine sites (53.571, C.I. 11.287–254.255, P = 0.000), access roads (AOR = 24.169, C.I. 5.544–105.357, P = 0.000), and human settlement footprints (AOR = 7.172, C.I. 1.969–26.128, P = 0.003) are significantly more likely to be less than the mean patch area (375,431.87 m2 = 37.54 ha) of forest cover. A ROC statistic of 0.995 achieved in this study suggests a high predictive power of the proposed model. Conclusion The study findings suggest that to ensure sustainable land uses and ecological integrity, there is a need for land use policies and land management strategies that ensure responsible livelihood activities as well as further restrictions on logging and mining in the globally significant biodiversity area.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 627
Author(s):  
Duong H. Nong ◽  
An T. Ngo ◽  
Hoa P. T. Nguyen ◽  
Thuy T. Nguyen ◽  
Lan T. Nguyen ◽  
...  

We analyzed the agricultural land-use changes in the coastal areas of Tien Hai district, Thai Binh province, in 2005, 2010, 2015, and 2020, using Landsat 5 and Landsat 8 data. We used the object-oriented classification method with the maximum likelihood algorithm to classify six types of land uses. The series of land-use maps we produced had an overall accuracy of more than 80%. We then conducted a spatial analysis of the 5-year land-use change using ArcGIS software. In addition, we surveyed 150 farm households using a structured questionnaire regarding the impacts of climate change on agricultural productivity and land uses, as well as farmers’ adaptation and responses. The results showed that from 2005 to 2020, cropland decreased, while aquaculture land and forest land increased. We observed that the most remarkable decreases were in the area of rice (485.58 ha), the area of perennial crops (109.7 ha), and the area of non-agricultural land (747.35 ha). The area of land used for aquaculture and forest increased by 566.88 ha and 772.60 ha, respectively. We found that the manifestations of climate change, such as extreme weather events, saltwater intrusion, drought, and floods, have had a profound impact on agricultural production and land uses in the district, especially for annual crops and aquaculture. The results provide useful information for state authorities to design land-management strategies and solutions that are economic and effective in adapting to climate change.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Quentin Struelens ◽  
Diego Mina ◽  
Olivier Dangles

Abstract Background Landscape composition has the potential to foster regulating ecosystem services such as pollination and biocontrol in temperate regions. However, most landscape studies do not take pesticide use into account even though it is the main control strategy worldwide and has negative impacts on beneficial insects. Moreover, few studies have explored these combined effects in smallholder cropping system with diverse landscapes and small cultivated fields. Methods We assessed the effect of semi-natural cover and pesticide use on pollinator and herbivore abundances and functions in 9 fields in the Ecuadorian Andes through participatory experiments with smallholder farmers. We performed a path analysis to quantify the effects of landscape and pesticide use on herbivory, pollination and ultimately yield. Results Pesticide use significantly reduced pollinator abundance but had no significant effect on pest abundance. Similarly, we found non-significant effects of landscape composition on either herbivory and pollination. The study also provides new information on understudied Andean lupine’s pests and pollinators, whose application for small farmers is discussed. Finally, we hypothesize that peculiarities of tropical smallholder cropping systems and landscapes could explain the non-significant landscape effects on insect-based processes, which calls for more research in places outside the well-studied temperate region. Conclusions Landscape composition did not show any significant effect on pest and pollinator while pesticide use decreased the abundance pollinators, but with no significant effect on yield. This study also provides information about Andean lupine reproduction and overcompensation mechanisms that could be of interest for local farmers and researchers of this understudied crop.


2021 ◽  
Vol 41 (4) ◽  
Author(s):  
Carolina Rodriguez ◽  
Linda-Maria Dimitrova Mårtensson ◽  
Erik Steen Jensen ◽  
Georg Carlsson

AbstractDiversifying cropping systems by increasing the number of cash and cover crops in crop rotation plays an important role in improving resource use efficiency and in promoting synergy between ecosystem processes. The objective of this study was to understand how the combination of crop diversification practices influences the performance of arable crop sequences in terms of crop grain yield, crop and weed biomass, and nitrogen acquisition in a temperate climate. Two field experiments were carried out. The first was a 3-year crop sequence with cereal or grain legume as the first crops, with and without undersown forage legumes and forage legume-grass crops, followed by a cereal crop. The second experiment was a 2-year crop sequence with cereal or legume as the first crops, a legume cover crop, and a subsequent cereal crop. For the first time, crop diversification practices were combined to identify plant-plant interactions in spatial and temporal scales. The results partly confirm the positive effect of diversifying cereal-based cropping systems by including grain legumes and cover crops in the crop sequence. Legume cover crops had a positive effect on subsequent cereal grain yield in one of the experiments. Using faba beans as the first crop in the crop sequence had both a positive and no effect on crop biomass and N acquisition of the subsequent cereal. In cover crops composed of a forage legume-grass mixture, the grass biomass and N acquisition were consistently increased after the grain legume, compared to the cereal-preceding crop. However, differences in the proportion of legume to grass in mixture did not influence crop yield or N acquisition in the subsequent cereal. In conclusion, these results support that increased crop diversity across spatial and temporal scales can contribute to resource-efficient production and enhance the delivery of services, contributing to more sustainable cropping systems.


2020 ◽  
Vol 12 (2) ◽  
pp. 699 ◽  
Author(s):  
Joy R. Petway ◽  
Yu-Pin Lin ◽  
Rainer F. Wunderlich

Though agricultural landscape biodiversity and ecosystem service (ES) conservation is crucial to sustainability, agricultural land is often underrepresented in ES studies, while cultural ES associated with agricultural land is often limited to aesthetic and tourism recreation value only. This study mapped 7 nonmaterial-intangible cultural ES (NICE) valuations of 34 rural farmers in western Taiwan using the Social Values for Ecosystem Services (SolVES) methodology, to show the effect of farming practices on NICE valuations. However, rather than a direct causal relationship between the environmental characteristics that underpin ES, and respondents’ ES valuations, we found that environmental data is not explanatory enough for causality within a socio-ecological production landscape where one type of land cover type (a micro mosaic of agricultural land cover) predominates. To compensate, we used a place-based approach with Google Maps data to create context-specific data to inform our assessment of NICE valuations. Based on 338 mapped points of 7 NICE valuations distributed among 6 areas within the landscape, we compared 2 groups of farmers and found that farmers’ valuations about their landscape were better understood when accounting for both the landscape’s cultural places and environmental characteristics, rather than environmental characteristics alone. Further, farmers’ experience and knowledge influenced their NICE valuations such that farm areas were found to be sources of multiple NICE benefits demonstrating that farming practices may influence ES valuation in general.


Parasitology ◽  
2017 ◽  
Vol 145 (7) ◽  
pp. 961-970 ◽  
Author(s):  
Audrey Turcotte ◽  
Marc Bélisle ◽  
Fanie Pelletier ◽  
Dany Garant

AbstractThe prevalence of vector-borne parasites such as haemosporidian species is influenced by several environmental factors. While the negative effects of parasitism on hosts are well documented, these can also be amplified by interactions with environmental stressors, many of which are anthropogenic. Yet, we know little about the possible effects of anthropogenic perturbations on parasite prevalence. The goals of this study were to assess the prevalence and environmental determinants of haemosporidian parasites in a declining population of Tree swallows (Tachycineta bicolor) living in an agricultural landscape in southern Québec, Canada. Overall, a low prevalence and a moderate lineage diversity were identified in both adults and nestlings, confirming that transmission can occur during the breeding period. Anthropic areas, extensive cultures (hayfields and pastures) and forest cover within 500 km of nest boxes, as well as daily temperature fluctuations, were all related to infection by haemosporidian parasites. These findings suggest that anthropogenic alterations of landscape composition can modulate the prevalence of haemosporidian parasites in Tree swallows. Our results represent a baseline for future comparative studies assessing haemosporidian parasite prevalence in human-modified landscapes.


2010 ◽  
Vol 4 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Anning Suo ◽  
Dongzhi Zhao ◽  
Fengshou Zhang ◽  
Huaru Wang ◽  
Fengqiao Liu

2020 ◽  
Vol 12 (3) ◽  
pp. 1062 ◽  
Author(s):  
Francis Azumah Chimsah ◽  
Liqun Cai ◽  
Jun Wu ◽  
Renzhi Zhang

Sustainable food production has long been a priority for mankind and this is being challenged by limited arable land, challenged landscapes, and higher human population growth. China started conservation farming around the 1950’s. However, main Conservation Tillage (CT) research started in 1992. Using a systematic meta-analysis approach, this review aims at examining China’s approach to CT and to characterize the main outcomes of long-term CT research across northern China. Data from organizations in charge of CT research in China showed an improvement in crop yield of at least 4% under double cropping systems and 6% under single cropping systems in dry areas of northern China. Furthermore, long-term CT practices were reported to have improved soil physical properties (soil structure, bulk density, pore size, and aggregate stability), soil nutrient levels, and reduction in greenhouse gas emission. Other benefits include significant increase in income levels and protection of the environment. Limitations to CT practice highlighted in this study include occasional reduction in crop yields during initial years of cropping, significant reduction in total N of soils, increase in N2O emission, and the need for customized machinery for its implementation. Outcomes of CT practice are ecologically and economically beneficial though its limitations are worth cogitating.


Sign in / Sign up

Export Citation Format

Share Document