scholarly journals Network Centrality as an Indicator for Pollinator Parasite Transmission via Flowers

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 872
Author(s):  
Niels Piot ◽  
Guy Smagghe ◽  
Ivan Meeus

Parasites are important actors within ecosystems. However, a key aspect to unraveling parasite epidemiology is understanding transmission. The bee pollinator community harbors several multihost parasites, which have been shown to be able to spread between species via flowers. Hence the plant–pollinator network can provide valuable information on the transmission of these parasites between species. Although several controlled experiments have shown that flowers function as a transmission hub for parasites, the link with the plant–pollinator network has rarely been addressed in the field. Here, one can hypothesize that the most central flowers in the network are more likely to enable parasite transmission between species. In this study, we test this hypothesis in three local plant–pollinator networks and show that the centrality of a plant in a weighted plant–pollinator network is a good predictor of the presence of multihost pollinator parasites on the plant’s flowers.

2017 ◽  
Author(s):  
Gianalberto Losapio ◽  
Miguel A. Fortuna ◽  
Jordi Bascompte ◽  
Bernhard Schmid ◽  
Richard Michalet ◽  
...  

SignificanceAlthough it is known that plant–plant and plant–pollinator interactions can strongly influence biodiversity and its effects on ecosystem functioning, the details of how competition and facili-tation among plants scale up to mutualistic interactions with pollinators and thus affect pollina-tion networks are poorly understood. We introduce a simple experimental system in which we control local plant interactions, measure pollinator responses and characterize plant–pollinator networks. We find that facilitation among plants produces synergistic and antagonistic effects on the pollinator community affecting the architecture and robustness of plant–pollinator net-works. Our results provide evidence for bottom-up non-additive effects of plant interactions on pollination networks and have implications for the way we study and manage ecosystems.


2020 ◽  
Author(s):  
Joseph A. LaManna ◽  
Laura A. Burkle ◽  
R. Travis Belote ◽  
Jonathan A. Myers

2017 ◽  
Vol 114 (48) ◽  
pp. 12761-12766 ◽  
Author(s):  
Antonio R. Castilla ◽  
Nathaniel S. Pope ◽  
Megan O’Connell ◽  
María F. Rodriguez ◽  
Laurel Treviño ◽  
...  

Animal pollination mediates both reproduction and gene flow for the majority of plant species across the globe. However, past functional studies have focused largely on seed production; although useful, this focus on seed set does not provide information regarding species-specific contributions to pollen-mediated gene flow. Here we quantify pollen dispersal for individual pollinator species across more than 690 ha of tropical forest. Specifically, we examine visitation, seed production, and pollen-dispersal ability for the entire pollinator community of a common tropical tree using a series of individual-based pollinator-exclusion experiments followed by molecular-based fractional paternity analyses. We investigate the effects of pollinator body size, plant size (as a proxy of floral display), local plant density, and local plant kinship on seed production and pollen-dispersal distance. Our results show that while large-bodied pollinators set more seeds per visit, small-bodied bees visited flowers more frequently and were responsible for more than 49% of all long-distance (beyond 1 km) pollen-dispersal events. Thus, despite their size, small-bodied bees play a critical role in facilitating long-distance pollen-mediated gene flow. We also found that both plant size and local plant kinship negatively impact pollen dispersal and seed production. By incorporating genetic and trait-based data into the quantification of pollination services, we highlight the diversity in ecological function mediated by pollinators, the influential role that plant and population attributes play in driving service provision, and the unexpected importance of small-bodied pollinators in the recruitment of plant genetic diversity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256929
Author(s):  
Elise Verrier ◽  
Emmanuelle Baudry ◽  
Carmen Bessa-Gomes

Pollinator insects forage in complex and unpredictable resource landscapes, often using social information from congeneric individuals to acquire knowledge about their environment. It has long been recognized that this process allows them to exploit floral resources more efficiently and thus increase individual fitness. However, by creating correlations between the behaviors of pollinators within a population, this could also indirectly influence the entire plant-pollinator community. One type of social information used by pollinators is the scent mark left on the corolla of flowers by previous visitors, which can be used as a cue to avoid recently depleted resources. We developed a spatially explicit agent-based model to examine the effects, at both individual and community levels, of pollinators using these scent marks. The model simulates a population of pollinators foraging on flowers in a continuous 2D space in which we can vary the density of pollinators. We showed that the use of scent marks as a source of information significantly increased the foraging efficiency of pollinators except when competition between pollinators was very low. At the community level, this also resulted in a marked homogenization between floral resources within the landscape: in the absence of scent marks, the coefficient of variation of the remaining nectar quantity per flower strongly increased with greater pollinator competition, but it remained low at all levels of competition when scent marks were used by the pollinators. Finally, the use of scent marks markedly decreased the number of pollinator flower visits, especially at high levels of pollinator competition, which can potentially reduce the pollination service.


Author(s):  
Patricia Landaverde-González ◽  
Eunice Enríquez ◽  
Juan Núñez-Farfán

AbstractIn recent years, evidence has been found that plant-pollinator interactions are altered by land-use and that genetic diversity also plays a role. However, how land-use and genetic diversity influence plant–pollinator interactions, particularly in the Neotropics, where many endemic plants exist is still an open question. Cucurbita pepo is a monoecious plant and traditional crop wide distributed, with high rates of molecular evolution, landraces associated with human cultural management and a history of coevolution with bees, which makes this species a promising model for studying the effect of landscape and genetic diversity on plant-pollinator interactions. Here, we assess (1) whether female and male flowers differences have an effect on the interaction network, (2) how C. pepo genetic diversity affects flower-bee visitation network structure, and (3) what is the effect that land-use, accounting for C. pepo genetic variability, has on pumpkin-bee interaction network structure. Our results indicate that female and male flowers presented the same pollinator community composition and interaction network structure suggesting that female/male differences do not have a significant effect on network evolution. Genetic diversity has a positive effect on modularity, nestedness and number of interactions. Further, the effect of semi-natural areas on nestedness could be buffered when genetic diversity is high. Our results suggest that considering genetic diversity is relevant for a better understanding of the effect of land-use on interaction networks. Additionally, this understanding has great value in conserving biodiversity and enhancing the stability of interaction networks in a world facing great challenges of habitat and diversity loss.


Ecography ◽  
2019 ◽  
Vol 42 (9) ◽  
pp. 1558-1568 ◽  
Author(s):  
Sara Reverté ◽  
Jordi Bosch ◽  
Xavier Arnan ◽  
Tomas Roslin ◽  
Constantí Stefanescu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document