scholarly journals Exploring entomopathogenic fungi from South Sumatra (Indonesia) soil and their pathogenicity against a new invasive maize pest, Spodoptera frugiperda

2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Siti Herlinda ◽  
OCTARIATI Noni ◽  
Suwandi Suwandi ◽  
Hasbi Hasbi

Abstract. Herlinda S, Octariati N, Suwandi S, Hasbi. 2020. Exploring entomopathogenic fungi from South Sumatra (Indonesia) soil and their pathogenicity against a new invasive maize pest, Spodoptera frugiperda. Biodiversitas 21: 2955-2965. Fall armyworm (Spodoptera frugiperda) is a new invasive maize pest in Indonesia that can cause maize yield losses of 18 million tons/year. To overcome the pest, local-specific entomopathogenic fungi are needed. This study aimed to explore entomopathogenic fungi from soil in South Sumatra and to determine their pathogenicity against S. frugiperda larvae. The fungi exploration was carried out in the lowlands and highlands of South Sumatra and the pathogenicity of obtained isolates were tested against the third instar larvae. The entomopathogenic fungi found were Metarhizium spp. and were successfully isolated as many as 14 isolates. All of the isolates were pathogenic to S. frugiperda larvae (70.67−78.67% mortality), the most pathogenic caused 78.67% mortality and significantly suppressed the emergence of adults up to 81.2%. Unhealthy larvae had a dry, shrunken, shrinking, odorless body, and its integument was covered in mycelia and conidia like yellowish-white powdery mixed with dark green. The unhealthy pupae and adults were in the abnormal and malformation shape. The abnormal pupae were shorter in size, bent, the to-be wings got wrinkled, and darker color, while the unhealthy adults had folded wings and were unable to fly. The two most pathogenic isolates were found from the lowland (PirOI) and highland (CasPsPGA) soil of South Sumatra. In conclusion, both of these isolates had the potential to be developed into local-specific mycoinsecticides to control pest insects in the highlands and/or lowlands in Indonesia.

Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 826
Author(s):  
Johnnie van den Berg ◽  
Carmen Britz ◽  
Hannalene du Plessis

Fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), is a major pest of maize. Yield losses between 30 and 70% in the Americas and between 11 and 100% in Africa have been reported. Little information exists on the effect of pest damage during different plant growth stages on yield loss. Previous studies showed that insecticide applications at weekly intervals did not always provide a yield gain comparable to only a single or two well-timed applications. In this study, we completed four field trials under high natural pest pressure. Treatments consisted of different regimes of insecticide applications that provided protection against damage during different growth stages. In one trial, the mean incidence of infested plants was 65%, and the yield benefit gained from four insecticide applications was 32.6%. The other three trials had 16 treatments which were divided into two spray sequences to protect plants against FAW damage for different lengths of time, between early vegetative stages and tasseling. Yield losses were 41.9, 26.5 and 56.8% for the three respective trials if no insecticides were applied. Yield loss of plants protected during earlier growth stages was significantly lower than that of the treatments which provided protection during later growth stages. More than three spray applications generally completed did not provide further yield gains. Plants that were protected more during early growth stages yield higher than plants protected during later growths stages.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 298
Author(s):  
Ouorou Ganni Mariel Guera ◽  
Federico Castrejón-Ayala ◽  
Norma Robledo ◽  
Alfredo Jiménez-Pérez ◽  
Georgina Sánchez-Rivera ◽  
...  

Chemical control is the main method used to combat fall armyworm in maize crops. However, its indiscriminate use usually leads to a more complex scenario characterized by loss of its effectiveness due to the development of resistance of the insect pest, emergence of secondary pests, and reduction of the populations of natural enemies. For this reason, efforts to develop strategies for agroecological pest management such as Push–Pull are increasingly growing. In this context, the present study was carried out to evaluate field effectiveness of Push–Pull systems for S. frugiperda management in maize crops in Morelos, Mexico. In a randomized block experiment, the incidence and severity of S. frugiperda, the development and yield of maize were evaluated in nine Push–Pull systems and a maize monoculture. The Push–Pull systems presented incidence/severity values lower than those of the monoculture. Morphological development and maize yield in the latter were lower than those of most Push–Pull systems. Mombasa—D. ambrosioides, Mulato II—T. erecta, Mulato II—C. juncea, Tanzania—T. erecta and Tanzania—D. ambrosioides systems presented higher yields than those of monocultures.


1990 ◽  
Vol 25 (1) ◽  
pp. 117-122
Author(s):  
T. Jamjanya ◽  
S. S. Quisenberry

Field evaluation of fall armyworm, Spodoptera frugiperda (J. E. Smith) feeding on yield and quality of bermudagrass, Cynodon dactylon (L.) Pers., var. ‘Alicia’, was studied during the 1983–1984 growing season. Yield losses of ‘Alicia’ ranged from 0.3 to 0.9 metric ton per ha when plots were infested with population densities of 1.1 to 9.9 larvae/0.1 m2, respectively. ‘Alicia’ was more tolerant to fall armyworm than ‘Coastal’ as indicated by lower damage ratings and losses in forage quality.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 430
Author(s):  
Sidol Houngbo ◽  
Afio Zannou ◽  
Augustin Aoudji ◽  
Hervé C. Sossou ◽  
Antonio Sinzogan ◽  
...  

Spodoptera frugiperda has caused significant losses of farmer income in sub-Saharan countries since 2016. This study assessed farmers’ knowledge of S. frugiperda, their perceptions and management practices in Benin. Data were collected through a national survey of 1237 maize farmers. Ninety-one point eight percent of farmers recognized S. frugiperda damage, 78.9% of them were able to identify its larvae, and 93.9% of the maize fields were infested. According to farmers, the perceived yield losses amounted to 797.2 kg/ha of maize, representing 49% of the average maize yield commonly obtained by farmers. Chi-square tests revealed that the severity of the pest attacks was significantly associated with cropping practices and types of grown maize varieties. About 16% of farmers identified francolin (Francolinus bicalcaratus), village weaver (Ploceus cucullatus), and common wasp (Vespula vulgaris) as natural enemies and 5% of them identified yellow nutsedge, chan, shea tree, neem, tamarind, and soybean as repellent plants of S. frugiperda. Most farmers (91.4%) used synthetic pesticides and 1.9% of them used botanical pesticides, which they found more effective than synthetic pesticides. Significant relationships exist between farmers’ management practices, their knowledge, organization membership, and contact with research and extension services. More research is required to further understand the effectiveness of botanical pesticides made by farmers against S. frugiperda and to refine them for scaling-up.


2021 ◽  
pp. 105641
Author(s):  
Kathy Overton ◽  
James L. Maino ◽  
Roger Day ◽  
Paul A. Umina ◽  
Bosibori Bett ◽  
...  

2021 ◽  
Vol 7 (12) ◽  
pp. 1073
Author(s):  
Julius Rajula ◽  
Sarayut Pittarate ◽  
Nakarin Suwannarach ◽  
Jaturong Kumla ◽  
Aneta A. Ptaszynska ◽  
...  

Fall armyworm, Spodoptera frugiperda, entered Thailand in late 2018 and has now spread in several regions, with devastating effects in maize and rice production, which are some of the most important cereals in the world. Since then, farmers have utilized the available chemical insecticides to try to control it, but their efforts have been futile. Instead, they have ended up using extraordinary dosages, hence threatening non-target species and other fauna and flora, as well as being costly. In this regard, research has been ongoing, aiming to come up with eco-friendly solutions for this insect. We surveyed and collected various isolates of native entomopathogenic fungi intending to test their efficacy against fall armyworm. Six isolates of entomopathogenic fungi were obtained and identified to Beauveria bassiana based on morphological characteristics and multi-gene phylogenetic analyses. Thereafter, the six isolates of B. bassiana were used to perform efficacy experiments against fall armyworm. Additionally, the glycosyl transferase-like protein 1 (GAS1) gene was analyzed. Consequently, all the isolates showed efficacy against S. frugiperda, with isolate BCMU6 causing up to 91.67% mortality. Further, molecular analysis revealed that all the isolates possess the GAS1 gene, which contributed to their virulence against the insect. This is the first report of utilizing native entomopathogenic B. bassiana to manage S. frugiperda in Thailand, with the revelation of GAS1 as a factor in inducing virulence and cuticle penetration. This study has provided valuable information on the potential development of Beauveria bassiana as an eco-friendly bioinsecticide for the management of fall armyworm in Thailand.


Author(s):  
Shahzad Muhammad Ayaz ◽  
Irfan Muhammad ◽  
Wahab Ahmad Abdul ◽  
Zafar Farhan ◽  
Abdulrehman Abdulrehman ◽  
...  

Maize Fall Armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae) is considered an economically important pest and becoming the main threat to food security. This polyphagous pest is widely distributed in various countries of the world especially tropical and subtropical regions. The toxicity of two entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana were evaluated against 2nd instar larvae of FAW under controlled conditions. The results showed that among tested entomopathogenic fungi, B. bassiana was found more toxic than M. anisopliae. B. bassiana caused 79% larval mortality while M. anisopliae 59%. M. anisopliae and B. bassiana were showed LT50 of 84.01 h and 80.99 h, respectively. M. anisopliae and B. bassiana were showed LC50 of 1.3×107 and 1.8×107 spores ml−1, respectively. The current study concluded that Entomopathogenic fungi can give effective control against early instar and further studies are needed to check the efficacy against older instars under field and laboratory conditions.


2018 ◽  
Author(s):  
Regan Early ◽  
Pablo González-Moreno ◽  
Sean T. Murphy ◽  
Roger Day

AbstractFall armyworm, Spodoptera frugiperda, is a crop pest native to the Americas, which has invaded and spread throughout sub-Saharan Africa within two years. Recent estimates of 20-50% maize yield loss in Africa suggest severe damage to livelihoods. Fall armyworm is still infilling its potential range in Africa, and could spread to other continents. In order to understand fall armyworm’s year-round, global, potential distribution, we used evidence of the effects of temperature and precipitation on fall armyworm life-history, combined with data on native and African distributions to construct Species Distribution Models (SDMs). Fall armyworm has only invaded areas that have a climate similar to the native distribution, validating the use of climatic SDMs. The strongest climatic limits on fall armyworm’s year-round distribution are the coldest annual temperature and the amount of rain in the wet season. Much of sub-Saharan Africa can host year-round fall armyworm populations, but the likelihoods of colonising North Africa and seasonal migrations into Europe are hard to predict. South and Southeast Asia and Australia have climate that would permit fall armyworm to invade. Current trade and transportation routes reveal Australia, China, India, Indonesia, Malaysia, Philippines, and Thailand face high threat of fall armyworm invasions originating from Africa.


Sign in / Sign up

Export Citation Format

Share Document