scholarly journals Development of a Set of Microsatellite Markers to Investigate Sexually Antagonistic Selection in the Invasive Ant Nylanderia fulva

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 643
Author(s):  
Pierre-Andre Eyer ◽  
Megan N. Moran ◽  
Alexander J. Blumenfeld ◽  
Edward L. Vargo

Sexually antagonistic selection (SAS) occurs when distinct alleles are differentially selected in each sex. In the invasive tawny crazy ant, Nylanderia fulva, a genomic region is under SAS, while the rest of the genome is randomly selected in males and females. In this study, we designed a suite of 15 microsatellite markers to study the origin and evolution of SAS in N. fulva. These SAS markers were polymorphic, with allelic frequencies that are highly different between males and females. All haploid males carry only a subset of the alleles present in the population, while females are reliably heterozygous, with one allele from the male gene pool and a different allele inherited from their mother. In addition, we identified six polymorphic markers not associated with SAS and six markers yielding consistent, yet monomorphic, amplification in the introduced range of this species. Reaction condition optimizations allowed all retained markers to be co-amplified in four PCR mixes. The SAS markers may be used to test for the strength and the extent of the genomic regions under SAS in both the native and introduced ranges of N. fulva, while the set of non-SAS loci may be used to assess the invasion route of this species. Overall, the application of these microsatellite markers will yield insights into the origin and evolution of SAS within and among species of the genus Nylanderia.

2019 ◽  
Vol 116 (48) ◽  
pp. 24157-24163 ◽  
Author(s):  
Pierre-André Eyer ◽  
Alexander J. Blumenfeld ◽  
Edward L. Vargo

Genetic diversity acts as a reservoir for potential adaptations, yet selection tends to reduce this diversity over generations. However, sexually antagonistic selection (SAS) may promote diversity by selecting different alleles in each sex. SAS arises when an allele is beneficial to one sex but harmful to the other. Usually, the evolution of sex chromosomes allows each sex to independently reach different optima, thereby circumventing the constraint of a shared autosomal genome. Because the X chromosome is found twice as often in females than males, it represents a hot spot for SAS, offering a refuge for recessive male-beneficial but female-costly alleles. Hymenopteran species do not have sex chromosomes; females are diploid and males are haploid, with sex usually determined by heterozygosity at the complementary sex-determining locus. For this reason, their entire genomes display an X-linked pattern, as every chromosome is found twice as often in females than in males, which theoretically predisposes them to SAS in large parts of their genome. Here we report an instance of sexual divergence in the Hymenoptera, a sexually reproducing group that lacks sex chromosomes. In the invasive ant Nylanderia fulva, a postzygotic SAS leads daughters to preferentially carry alleles from their mothers and sons to preferentially carry alleles from their grandfathers for a substantial region (∼3%) of the genome. This mechanism results in nearly all females being heterozygous at these regions and maintains diversity throughout the population, which may mitigate the effects of a genetic bottleneck following introduction to an exotic area and enhance the invasion success of this ant.


2010 ◽  
Vol 278 (1707) ◽  
pp. 855-862 ◽  
Author(s):  
Francisco Úbeda ◽  
David Haig ◽  
Manus M. Patten

Linkage disequilibrium (LD) is an association between genetic loci that is typically transient. Here, we identify a previously overlooked cause of stable LD that may be pervasive: sexual antagonism. This form of selection produces unequal allele frequencies in males and females each generation, which upon admixture at fertilization give rise to an excess of haplotypes that couple male-beneficial with male-beneficial and female-beneficial with female-beneficial alleles. Under sexual antagonism, LD is obtained for all recombination frequencies in the absence of epistasis. The extent of LD is highest at low recombination and for stronger selection. We provide a partition of the total LD into distinct components and compare our result for sexual antagonism with Li and Nei's model of LD owing to population subdivision. Given the frequent observation of sexually antagonistic selection in natural populations and the number of traits that are often involved, these results suggest a major contribution of sexual antagonism to genomic structure.


Author(s):  
Leigh W. Simmons

The reproductive interests of males and females will almost always differ, for example over whether to mate and how often, when to produce offspring and how many, or how much to invest in each offspring. Whenever the reproductive interests of males and females differ, opposing selection on males and females to achieve their preferred outcome will generate sexually antagonistic selection. Such sexual conflict is reflected in differences in the appearance and behaviour of the sexes as each evolves to gain the advantage in a fitness ‘arms race’. ‘Sexual conflict’ explores the evolutionary consequences of these arms races in the context of sexual selection as it occurs both before and after mating.


2020 ◽  
Author(s):  
Elise A. Lucotte ◽  
Clara Albiñana ◽  
Romain Laurent ◽  
Claude Bhérer ◽  
Thomas Bataillon ◽  
...  

ABSTRACTSex dimorphisms are widespread in animals and plants, for morphological as well as physiological traits. Understanding the genetic basis of sex dimorphism and its evolution is crucial for understanding biological differences between the sexes. Genetic variants with sex-antagonistic effects on fitness are expected to segregate in populations at the early phases of sexual dimorphism emergence. Detecting such variants is notoriously difficult, and the few genome-scan methods employed so far have limited power and little specificity. Here, we propose a new framework to detect a signature of sexually antagonistic selection. We rely on trio datasets where sex-biased transmission distortions can be directly tracked from parents to offspring, and allows identifying signal of sexually antagonistic transmission distortions in genomic regions. We report the genomic location and recombination pattern surrounding 66 regions detected as potentially under sexually antagonist selection. We find an enrichment of genes associated with embryonic development within these regions. Last, we highlight two candidates regions for sexually antagonistic selection in humans.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Julen Mendieta-Esteban ◽  
Marco Di Stefano ◽  
David Castillo ◽  
Irene Farabella ◽  
Marc A Marti-Renom

Abstract Chromosome conformation capture (3C) technologies measure the interaction frequency between pairs of chromatin regions within the nucleus in a cell or a population of cells. Some of these 3C technologies retrieve interactions involving non-contiguous sets of loci, resulting in sparse interaction matrices. One of such 3C technologies is Promoter Capture Hi-C (pcHi-C) that is tailored to probe only interactions involving gene promoters. As such, pcHi-C provides sparse interaction matrices that are suitable to characterize short- and long-range enhancer–promoter interactions. Here, we introduce a new method to reconstruct the chromatin structural (3D) organization from sparse 3C-based datasets such as pcHi-C. Our method allows for data normalization, detection of significant interactions and reconstruction of the full 3D organization of the genomic region despite of the data sparseness. Specifically, it builds, with as low as the 2–3% of the data from the matrix, reliable 3D models of similar accuracy of those based on dense interaction matrices. Furthermore, the method is sensitive enough to detect cell-type-specific 3D organizational features such as the formation of different networks of active gene communities.


2012 ◽  
Vol 78 (7) ◽  
pp. 2435-2442 ◽  
Author(s):  
Marie Foulongne-Oriol ◽  
Anne Rodier ◽  
Jean-Michel Savoie

ABSTRACTDry bubble, caused byLecanicillium fungicola, is one of the most detrimental diseases affecting button mushroom cultivation. In a previous study, we demonstrated that breeding for resistance to this pathogen is quite challenging due to its quantitative inheritance. A second-generation hybrid progeny derived from an intervarietal cross between a wild strain and a commercial cultivar was characterized forL. fungicolaresistance under artificial inoculation in three independent experiments. Analysis of quantitative trait loci (QTL) was used to determine the locations, numbers, and effects of genomic regions associated with dry-bubble resistance. Four traits related to resistance were analyzed. Two to four QTL were detected per trait, depending on the experiment. Two genomic regions, on linkage group X (LGX) and LGVIII, were consistently detected in the three experiments. The genomic region on LGX was detected for three of the four variables studied. The total phenotypic variance accounted for by all QTL ranged from 19.3% to 42.1% over all traits in all experiments. For most of the QTL, the favorable allele for resistance came from the wild parent, but for some QTL, the allele that contributed to a higher level of resistance was carried by the cultivar. Comparative mapping with QTL for yield-related traits revealed five colocations between resistance and yield component loci, suggesting that the resistance results from both genetic factors and fitness expression. The consequences for mushroom breeding programs are discussed.


Evolution ◽  
2006 ◽  
Vol 60 (10) ◽  
pp. 2168-2181 ◽  
Author(s):  
Matthew R. Robinson ◽  
Jill G. Pilkington ◽  
Tim H. Clutton-Brock ◽  
Josephine M. Pemberton ◽  
Loeske E.B. Kruuk

2021 ◽  
Vol 30 (1) ◽  
pp. 95-103
Author(s):  
Mohammad Shamimul Alam ◽  
Israt Jahan ◽  
Sadniman Rahman ◽  
Hawa Jahan ◽  
Kaniz Fatema

Tilapia is a hardy fish which can survive in water bodies polluted with heavy metals. Metal resistance is conferred by higher expression of metallothionein gene (mt) in many organisms. Level, time and tissue-specificity of gene expression is regulated through transcription factor binding sites (TFBS) which may be present in the upstream, downstream, or even in the introns of a gene. So, as a candidate regulatory region, the 5’upstream sequence of mt gene in three tilapia species, Oreochromis aureus, O. niloticus and O. mossambicus was studied. The targeted region was PCR-amplified and then sequenced using a pair of custom-designed primer. A total of only 2.7% variation was found in the sequenced genomic region among the three species. Metal-related TFBS were predicted from these sequences. A total of twenty eight TFBS were found in O. aureus and twenty nine in O. mossambicus and O. niloticus. The number of metalrelated TFBS predicted in the targeted sequence was significantly higher compared to that found in randomly selected other genomic regions of same size from O. niloticus genome. Thus, the results suggest the presence of putative regulatory elements in the targeted upstream region which might have important role in the regulation of mt gene function. Dhaka Univ. J. Biol. Sci. 30(1): 95-103, 2021 (January)


Genetics ◽  
1994 ◽  
Vol 137 (4) ◽  
pp. 987-997 ◽  
Author(s):  
S G Clark ◽  
X Lu ◽  
H R Horvitz

Abstract The Caenorhabditis elegans locus lin-15 negatively regulates an intercellular signaling process that induces formation of the hermaphrodite vulva. The lin-15 locus controls two separate genetic activities. Mutants that lack both activities have multiple, ectopic pseudo-vulvae resulting from the overproduction of vulval cells, whereas mutants defective in only one lin-15 activity appear wild-type. lin-15 acts non-cell-autonomously to prevent the activation of a receptor tyrosine kinase/ras signaling pathway. We report here the molecular characterization of the lin-15 locus. The two lin-15 activities are encoded by contiguous genomic regions and by two distinct, non-overlapping transcripts that may be processed from a single mRNA precursor by trans-splicing. Based on the DNA sequence, the 719- and 1,440-amino acid lin-15 proteins are not similar to each other or to known proteins. lin-15 multivulva mutants, which are defective in both lin-15 activities, contain deletions and insertions that affect the lin-15 genomic region.


Sign in / Sign up

Export Citation Format

Share Document