scholarly journals The First Eight Mitogenomes of Leaf-Mining Dactylispa Beetles (Coleoptera: Chrysomelidae: Cassidinae) Shed New Light on Subgenus Relationships

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1005
Author(s):  
Shengdi Zhang ◽  
Lukáš Sekerka ◽  
Chengqing Liao ◽  
Chengpeng Long ◽  
Jiasheng Xu ◽  
...  

The taxonomic classification of Dactylispa, a large genus of leaf-mining beetles, is problematic because it is currently based on morphology alone. Here, the first eight mitochondrial genomes of Dactylispa species, which were used to construct the first molecular phylogenies of this genus, are reported. The lengths of the eight mitogenomes range from 17,189 bp to 20,363 bp. All of the mitochondrial genomes include 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and 1 A + T-rich region. According to the nonsynonymous/synonymous mutation ratio (Ka/Ks) of all PCGs, the highest and the lowest evolutionary rates were found for atp8 and cox1, respectively, which is a common phenomenon among animals. According to relative synonymous codon usage, UUA(L) has the highest frequency. With two Gonophorini species as the outgroup, mitogenome-based phylogenetic trees of the eight Dactylispa species were constructed using maximum likelihood (ML) and Bayesian inference (BI) methods based on the PCGs, tRNAs, and rRNAs. Two DNA-based phylogenomic inferences and one protein-based phylogenomic inference support the delimitation of the subgenera Dactylispa s. str. and Platypriella as proposed in the system of Chen et al. (1986). However, the subgenus Triplispa is not recovered as monophyletic. The placement of Triplispa species requires further verification and testing with more species. We also found that both adult body shape and host plant relationship might explain the subgeneric relationships among Dactylispa beetles to a certain degree.

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 668
Author(s):  
Tinghao Yu ◽  
Yalin Zhang

More studies are using mitochondrial genomes of insects to explore the sequence variability, evolutionary traits, monophyly of groups and phylogenetic relationships. Controversies remain on the classification of the Mileewinae and the phylogenetic relationships between Mileewinae and other subfamilies remain ambiguous. In this study, we present two newly completed mitogenomes of Mileewinae (Mileewa rufivena Cai and Kuoh 1997 and Ujna puerana Yang and Meng 2010) and conduct comparative mitogenomic analyses based on several different factors. These species have quite similar features, including their nucleotide content, codon usage of protein genes and the secondary structure of tRNA. Gene arrangement is identical and conserved, the same as the putative ancestral pattern of insects. All protein-coding genes of U. puerana began with the start codon ATN, while 5 Mileewa species had the abnormal initiation codon TTG in ND5 and ATP8. Moreover, M. rufivena had an intergenic spacer of 17 bp that could not be found in other mileewine species. Phylogenetic analysis based on three datasets (PCG123, PCG12 and AA) with two methods (maximum likelihood and Bayesian inference) recovered the Mileewinae as a monophyletic group with strong support values. All results in our study indicate that Mileewinae has a closer phylogenetic relationship to Typhlocybinae compared to Cicadellinae. Additionally, six species within Mileewini revealed the relationship (U. puerana + (M. ponta + (M. rufivena + M. alara) + (M. albovittata + M. margheritae))) in most of our phylogenetic trees. These results contribute to the study of the taxonomic status and phylogenetic relationships of Mileewinae.


2013 ◽  
Vol 12 (1) ◽  
pp. 587-596 ◽  
Author(s):  
L. Chen ◽  
D.Y. Yang ◽  
T.F. Liu ◽  
X. Nong ◽  
X. Huang ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1874 ◽  
Author(s):  
Huiting Ruan ◽  
Min Li ◽  
Zhenhai Li ◽  
Jiajie Huang ◽  
Weiyuan Chen ◽  
...  

Mitochondrial genome is a powerful molecule marker to explore phylogenetic relationships and reveal molecular evolution in ichthyological studies. Gerres species play significant roles in marine fishery, but its evolution has received little attention. To date, only two Gerres mitochondrial genomes were reported. In the present study, three mitogenomes of Gerres (Gerres filamentosus, Gerres erythrourus, and Gerres decacanthus) were systemically investigated. The lengths of the mitogenome sequences were 16,673, 16,728, and 16,871 bp for G. filamentosus, G. erythrourus, and G. decacanthus, respectively. Most protein-coding genes (PCGs) were initiated with the typical ATG codon and terminated with the TAA codon, and the incomplete termination codon T/TA could be detected in the three species. The majority of AT-skew and GC-skew values of the 13 PCGs among the three species were negative, and the amplitude of the GC-skew was larger than the AT-skew. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, were which most likely due to the difference in their living environment. The phylogenetic tree was constructed by molecular method (Bayesian Inference (BI) and maximum Likelihood (ML)), providing further supplement to the scientific classification of fish. Three Gerres species were differentiated in late Cretaceous and early Paleogene, and their evolution might link with the geological events that could change their survival environment.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 754
Author(s):  
Yupeng Wu ◽  
Hui Fang ◽  
Jiping Wen ◽  
Juping Wang ◽  
Tianwen Cao ◽  
...  

In this study, the complete mitochondrial genomes (mitogenomes) of Hestina persimilis and Hestinalis nama (Nymphalidae: Apaturinae)were acquired. The mitogenomes of H. persimilis and H. nama are 15,252 bp and 15,208 bp in length, respectively. These two mitogenomes have the typical composition, including 37 genes and a control region. The start codons of the protein-coding genes (PCGs) in the two mitogenomes are the typical codon pattern ATN, exceptCGA in the cox1 gene. Twenty-one tRNA genes show a typical clover leaf structure, however, trnS1(AGN) lacks the dihydrouridine (DHU) stem. The secondary structures of rrnL and rrnS of two species were predicted, and there are several new stem loops near the 5’ of rrnL secondary structure. Based on comparative genomic analysis, four similar conservative structures can be found in the control regions of these two mitogenomes. The phylogenetic analyses were performed on mitogenomes of Nymphalidae. The phylogenetic trees show that the relationships among Nymphalidae are generally identical to previous studies, as follows: Libytheinae\Danainae + ((Calinaginae + Satyrinae) + Danainae\Libytheinae + ((Heliconiinae + Limenitidinae) + (Nymphalinae + (Apaturinae + Biblidinae)))). Hestinalisnama isapart fromHestina, andclosely related to Apatura, forming monophyly.


Author(s):  
Taghi Ghassemi-Khademi ◽  
Mohammad Ali Oshaghi ◽  
Hassan Vatandoost ◽  
Seyed Massoud Madjdzadeh ◽  
Mohammad Amin Gorouhi

Background: Among the blood-sucking insects, Anopheles mosquitoes have a very special position, because they transmit parasites of the genus Plasmodium, which cause malaria as one of the main vector-borne disease worldwide. The aim of this review study was to evaluate utility of complete mitochondrial genomes in phylogenetic classification of the species of Anopheles. Methods: The complete mitochondrial genome sequences belonging to 28 species of the genus Anopheles (n=32) were downloaded from NCBI. The phylogenetic trees were constructed using the ML, NJ, ME, and Bayesian inference methods. Results: In general, the results of the present survey revealed that the complete mitochondrial genomes act very accu- rately in recognition of the taxonomic and phylogenetic status of these species and provide a higher level of support than those based on individual or partial mitochondrial genes so that by using them, we can meticulously reconstruct and modify Anopheles classification. Conclusion: Understanding the taxonomic position of Anopheles, can be a very effective step in better planning for controlling these malaria vectors in the world and will improve our knowledge of their evolutionary biology.


2019 ◽  
Author(s):  
Gang Liu ◽  
Lizhi Zhou ◽  
Guanghong Zhao

The phylogenetic relationships between owls and nightjars are rather complex and controversial. To clarify these relationships, we determined the complete mitochondrial genomes of Glaucidium cuculoides, Otus scops, Glaucidium brodiei, Caprimulgus indicus, and Strix leptogrammica, and estimated phylogenetic trees based on the complete mitochondrial genomes and aligned sequences from closely related species that were obtained in GenBank. The complete mitochondrial genomes were 17392, 17317, 17549, 17536, and 16307 bp in length. All mitochondrial genomes contained 13 protein-coding genes, two rRNAs, 22 tRNAs, and a putative control region. All mitochondrial genomes except for that of Strix leptogrammica contained a pseudo-control region. ATG, GTG, and ATA are generally start codons, whereas TAA is the most frequent stop codon. All tRNAs in the new mtDNAs could be folded into canonical cloverleaf secondary structures except for tRNASer (AGY) and tRNALeu (CUN) , which missing the “DHU” arm. The phylogenetic relationships demonstrated that Strigiformes and Caprimulgiformes are independent orders, and Aegothelidae is a family within Caprimulgiformes. The results also revealed that Accipitriformes is an independent order, and Pandionidae and Sagittariidae are independent families. The results also supported that Apodiformes is polyphyletic, and hummingbirds (family Trochilidae) belong to Apodiformes. Piciformes was most distantly related to all other analyzed orders.


2011 ◽  
Vol 57 (6) ◽  
pp. 785-805 ◽  
Author(s):  
Guiying Chen ◽  
Bin Wang ◽  
Jiongyu Liu ◽  
Feng Xie ◽  
Jianping Jiang

Abstract The complete mitochondrial genome of Nanorana pleskei from the Qinghai-Tibet Plateau was sequenced. It includes 17,660 base pairs, containing 13 protein-coding genes, two rRNAs and 23 tRNAs. A tandem duplication of tRNAMet gene was found in this mitochondrial genome, and the similarity between the two tRNAMet genes is 85.8%, being the highest in amphibian mitochondrial genomes sequenced thus far. Based on gene organization, 24 types were found from 145 amphibian mitochondrial genomes. Type 1 was present in 108 species, type 11 in 11 species, types 5, 16, 17, and 20 each in two species, and the others each present in one species. Fifteen types were found in Anura, being the most diversity in three orders of the Lissamphibia. Our phylogenetic results using 11 protein-coding gene sequences of 145 amphibian mitochondrial genomes strongly support the monophyly of the Lissamphibia, as well as its three orders, the Gymnophiona, Caudata, and Anura, among which the relationships were ((Gymnophiona (Caudata, Anura)). Based on the phylogenetic trees, type 1 was recognized as the ancestral type for amphibians, and type 11 was the synapomorphic type for the Neobatrachia. Gene rearrangements among lineages provide meaningful phylogenetic information. The rearrangement of the LTPF tRNA gene cluster and the translocation of the ND5 gene only found in the Neobatrachia support the monophyly of this group; similarly, the tandem duplication of the tRNAMet genes only found in the Dicroglossidae support the monophyly of this family.


2018 ◽  
Vol 63 (2) ◽  
pp. 280-286 ◽  
Author(s):  
Kun Li ◽  
Muhammad Shahzad ◽  
Hui Zhang ◽  
Khalid Mehmood ◽  
Xiong Jiang ◽  
...  

AbstractThe present study was designed to determine and analyze themtgenomes ofMetastrongylus salmi(M.salmi), and reveal the phylogenetic relationships of this parasite usingmtDNA sequences. Results showed that the completemtgenome ofM.salmiwas 13722 bp containing 12 protein-coding genes (cox1-3, nad1-6, nad4L, atp6 and cytb), 22 transfer RNA genes, and 2 ribosomal RNA genes (rrnL and rrnS). The overall A+T content was 73.54% and the nucleotide composition was A (23.52%), C (6.14%), G (19.60%), T (50.02%), and N (UCAG) (0.73%). A total of 4237 amino acids are encoded from the Tibetan isolates ofM. salmi mtgenomes. The ATA was predicted as the most common starting codon with 41.7% (5/12 protein genes); and 11 of the 12 protein genes were found to have a TAG or TAA translation termination codon. By clustering together the phylogenetic trees of TibetanM.salmiand AustrianM.salmi, theM.salmiisolated from Tibetan pigs was found to be highly homological with that stemmed from Austrian one. This information provides meaningful insights into the phylogenetic position of theM.salmiChina isolate and represents a useful resource for selecting molecular markers for diagnosis and population studies.


2019 ◽  
Vol 19 (6) ◽  
Author(s):  
Wanqing Zhao ◽  
Qing Zhao ◽  
Min Li ◽  
Jiufeng Wei ◽  
Xianhong Zhang ◽  
...  

Abstract The family Pentatomidae, the largest within the superfamily Pentatomoidae, comprises about 5,000 species; many of which are economically important pests. Although the phylogeny of Pentatomidae species has been studied using various molecular markers, their phylogenetic relationships remain controversial. Recently, mitochondrial genomes (mitogenomes) have been extensively employed to examine the phylogenetics and evolution of different insects, and in this study, we sequenced complete/near-complete mitochondrial genomes from five shield bug species of Eurydema to gain a better understanding of phylogenetic relationships in the Pentatomidae. The five mitogenomes ranged in length from 15,500 to 16,752 bp and comprised 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a control region. We compared mitogenomic characteristics of the Pentatomidae and constructed phylogenetic trees using Bayesian inference and maximum likelihood methods. Our results showed that gene arrangements, base composition, start/stop codons, gene overlaps, and RNA structures were conserved within the Pentatomidae and that congeneric species shared more characteristics. Saturation and heterogeneity analyses revealed that our PCGs and PCGRNA datasets were valid for phylogenetic analysis. Phylogenetic analyses showed consistent topologies based on BI and ML methods. These analyses strongly supported that Eurydema species belong to the tribe Strachiini, and formed a sister group with Pentatomini. The relationships among Eurydema species were shown to be consistent with their morphological features. (Strachiini + Pentatomini) was found to be a stable sibling of the clade comprising Cappaeini, Graphosomini, and Carpocorini. Furthermore, our results indicated that Graphosoma rubrolineatum (Heteroptera: Pentatomidae) belongs to the Pentatominae and not the Podopinae.


Sign in / Sign up

Export Citation Format

Share Document