scholarly journals Cyclic Block Copolymer Microchannel Fabrication and Sealing for Microfluidics Applications

Inventions ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 49 ◽  
Author(s):  
Chia-Yi Yen ◽  
Moh-Ching Chang ◽  
Zong-Fu Shih ◽  
Yi-Hsing Lien ◽  
Chia-Wen Tsao

High mechanical rigidity, chemical resistance, and ultraviolet-visible light transmissivity of thermoplastics are attractive characteristics in microfluidics because various biomedical microfluidic devices require solvent, acid, or base manipulation, and optical observation or detection. The cyclic block copolymer (CBC) is a new class of thermoplastics with excellent optical properties, low water absorption, favorable chemical resistance, and low density, which make it ideal for use in polymer microfluidic applications. In the polymer microfabrication process, front-end microchannel fabrication and post-end bonding are critical steps that determine the success of polymer microfluidic devices. In this study, for the first time, we verified the performance of CBC created through front-end microchannel fabrication by applying hot embossing and post-end sealing and bonding, and using thermal fusion and ultraviolet (UV)/ozone surface-assist bonding methods. Two grades of CBC were evaluated and compared with two commonly used cyclic olefin polymers, cyclic olefin copolymers (COC), and cyclic olefin polymers (COP). The results indicated that CBCs provided favorable pattern transfer (>99%) efficiency and high bonding strength in microchannel fabrication and bonding procedures, which is ideal for use in microfluidics.

Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 85 ◽  
Author(s):  
Brigitte Bruijns ◽  
Andrea Veciana ◽  
Roald Tiggelaar ◽  
Han Gardeniers

Microfluidic devices offer important benefits for forensic applications, in particular for fast tests at a crime scene. A large portion of forensic applications require microfluidic chip material to show compatibility with biochemical reactions (such as amplification reactions), and to have high transparency in the visible region and high chemical resistance. Also, preferably, manufacturing should be simple. The characteristic properties of cyclic olefin copolymer (COC) fulfills these requirements and offers new opportunities for the development of new forensic tests. In this work, the versatility of COC as material for lab-on-a-chip (LOC) systems in forensic applications has been explored by realizing two proof-of-principle devices. Chemical resistance and optical transparency were investigated for the development of an on-chip presumptive color test to indicate the presence of an illicit substance through applying absorption spectroscopy. Furthermore, the compatibility of COC with a DNA amplification reaction was verified by performing an on-chip multiple displacement amplification (MDA) reaction.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Manuela Denz ◽  
Gerrit Brehm ◽  
Clément Y. J. Hémonnot ◽  
Heidi Spears ◽  
Andrew Wittmeier ◽  
...  

Fabrication of X-ray compatible microfluidic devices by hot embossing, and characterization for small angle X-ray scattering.


2018 ◽  
Vol 20 (2) ◽  
Author(s):  
Philipp Ganser ◽  
Christoph Baum ◽  
David Chargin ◽  
Alexis F. Sauer-Budge ◽  
Andre Sharon

Sign in / Sign up

Export Citation Format

Share Document