scholarly journals Roles of Ceramides in Non-Alcoholic Fatty Liver Disease

2021 ◽  
Vol 10 (4) ◽  
pp. 792
Author(s):  
Eric Hajduch ◽  
Floriane Lachkar ◽  
Pascal Ferré ◽  
Fabienne Foufelle

Non-alcoholic fatty liver disease is one of the most common chronic liver diseases, ranging from simple steatosis to steatohepatitis, fibrosis, and cirrhosis. Its prevalence is rapidly increasing and presently affects around 25% of the general population of Western countries, due to the obesity epidemic. Liver fat accumulation induces the synthesis of specific lipid species and particularly ceramides, a sphingolipid. In turn, ceramides have deleterious effects on hepatic metabolism, a phenomenon called lipotoxicity. We review here the evidence showing the role of ceramides in non-alcoholic fatty liver disease and the mechanisms underlying their effects.

2020 ◽  
Vol 18 (Sup6) ◽  
pp. S15-S21
Author(s):  
Lea Ladegaard Grønkjær ◽  
Charlotte Wernberg ◽  
Mette Munk Lauridsen

Obesity is a frequent cause of morbidity in the Western world, and its prevalence has doubled since 1980. It is well known that conditions such as cardiovascular disease and type 2 diabetes can be serious consequences of obesity. However, less is known about whether the liver may also be affected by the obesity epidemic. Non-alcoholic fatty liver disease (NAFLD) is present in more than a quarter of the adult Western population, and the prevalence is increasing among both adults and children. NAFLD thus represents a common liver disease in the Western world. This is worrisome, because NAFLD can cause liver inflammation and various stages of fibrosis and eventually result in cirrhosis and hepatocellular carcinoma, which both have a high mortality rate due to related complications. Lifestyle change is the most important aspect in the prevention and treatment of NAFLD, and nurses play an important role in the early detection of NAFLD and the prevention of its possible progression.


2015 ◽  
Vol 16 (12) ◽  
pp. 1293-1300 ◽  
Author(s):  
Yuki Kawano ◽  
Shin Nishiumi ◽  
Masaya Saito ◽  
Yoshihiko Yano ◽  
Takeshi Azuma ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 21-35
Author(s):  
Yana Geng ◽  
Klaas Nico Faber ◽  
Vincent E. de Meijer ◽  
Hans Blokzijl ◽  
Han Moshage

Abstract Background Non-alcoholic fatty liver disease (NAFLD), characterized as excess lipid accumulation in the liver which is not due to alcohol use, has emerged as one of the major health problems around the world. The dysregulated lipid metabolism creates a lipotoxic environment which promotes the development of NAFLD, especially the progression from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH). Purposeand Aim This review focuses on the mechanisms of lipid accumulation in the liver, with an emphasis on the metabolic fate of free fatty acids (FFAs) in NAFLD and presents an update on the relevant cellular processes/mechanisms that are involved in lipotoxicity. The changes in the levels of various lipid species that result from the imbalance between lipolysis/lipid uptake/lipogenesis and lipid oxidation/secretion can cause organellar dysfunction, e.g. ER stress, mitochondrial dysfunction, lysosomal dysfunction, JNK activation, secretion of extracellular vesicles (EVs) and aggravate (or be exacerbated by) hypoxia which ultimately lead to cell death. The aim of this review is to provide an overview of how abnormal lipid metabolism leads to lipotoxicity and the cellular mechanisms of lipotoxicity in the context of NAFLD.


2021 ◽  
Vol 10 (5) ◽  
pp. 1081
Author(s):  
Mikkel Parsberg Werge ◽  
Adrian McCann ◽  
Elisabeth Douglas Galsgaard ◽  
Dorte Holst ◽  
Anne Bugge ◽  
...  

The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocysteine will also be increased due to impairment of the folate and methionine cycles. The key enzymes of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in animal models. A causative link between the TSP and NAFLD has not been established. However, dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to NAFLD may reveal mechanisms involved in the development and progression of NAFLD.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 122
Author(s):  
Jun-Hyuk Lee ◽  
Hye-Sun Lee ◽  
Byoung-Kwon Lee ◽  
Yu-Jin Kwon ◽  
Ji-Won Lee

Although sarcopenia is known to be a risk factor for non-alcoholic fatty liver disease (NAFLD), whether NAFLD is a risk factor for the development of sarcopenia is not clear. We investigated relationships between NAFLD and low skeletal muscle mass index (LSMI) using three different datasets. Participants were classified into LSMI and normal groups. LSMI was defined as a body mass index (BMI)-adjusted appendicular skeletal muscle mass <0.789 in men and <0.512 in women or as the sex-specific lowest quintile of BMI-adjusted total skeletal muscle mass. NAFLD was determined according to NAFLD liver fat score or abdominal ultrasonography. The NAFLD groups showed a higher hazard ratios (HRs) with 95% confidence intervals (CIs) for LSMI than the normal groups (HRs = 1.21, 95% CIs = 1.05–1.40). The LSMI groups also showed a higher HRs with 95% CIs for NAFLD than normal groups (HRs = 1.56, 95% CIs = 1.38–1.78). Participants with NAFLD had consistently less skeletal muscle mass over 12 years of follow-up. In conclusion, LSMI and NAFLD showed a relationship. Maintaining muscle mass should be emphasized in the management of NAFLD.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 687
Author(s):  
Daniela Gabbia ◽  
Luana Cannella ◽  
Sara De De Martin

A peculiar role for oxidative stress in non-alcoholic fatty liver disease (NAFLD) and its transition to the inflammatory complication non-alcoholic steatohepatitis (NASH), as well as in its threatening evolution to hepatocellular carcinoma (HCC), is supported by numerous experimental and clinical studies. NADPH oxidases (NOXs) are enzymes producing reactive oxygen species (ROS), whose abundance in liver cells is closely related to inflammation and immune responses. Here, we reviewed recent findings regarding this topic, focusing on the role of NOXs in the different stages of fatty liver disease and describing the current knowledge about their mechanisms of action. We conclude that, although there is a consensus that NOX-produced ROS are toxic in non-neoplastic conditions due to their role in the inflammatory vicious cycle sustaining the transition of NAFLD to NASH, their effect is controversial in the neoplastic transition towards HCC. In this regard, there are indications of a differential effect of NOX isoforms, since NOX1 and NOX2 play a detrimental role, whereas increased NOX4 expression appears to be correlated with better HCC prognosis in some studies. Further studies are needed to fully unravel the mechanisms of action of NOXs and their relationships with the signaling pathways modulating steatosis and liver cancer development.


2017 ◽  
Vol 23 (10) ◽  
pp. 1881 ◽  
Author(s):  
Shira Zelber-Sagi ◽  
Shiran Bord ◽  
Gali Dror-Lavi ◽  
Matthew Lee Smith ◽  
Samuel D Towne Jr ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1822
Author(s):  
Christian von Loeffelholz ◽  
Sina M. Coldewey ◽  
Andreas L. Birkenfeld

5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.


Sign in / Sign up

Export Citation Format

Share Document