scholarly journals 60-S Retrogated Compressed Sensing 2D Cine of the Heart: Sharper Borders and Accurate Quantification

2021 ◽  
Vol 10 (11) ◽  
pp. 2417
Author(s):  
Benjamin Longère ◽  
Christos V. Gkizas ◽  
Augustin Coisne ◽  
Lucas Grenier ◽  
Valentina Silvestri ◽  
...  

Background and objective: Real-time compressed sensing cine (CSrt) provides reliable quantification for both ventricles but may alter image quality. The aim of this study was to assess image quality and the accuracy of left (LV) and right ventricular (RV) volumes, ejection fraction and mass quantifications based on a retrogated segmented compressed sensing 2D cine sequence (CSrg). Methods: Thirty patients were enrolled. Each patient underwent the reference retrogated segmented steady-state free precession cine sequence (SSFPref), the real-time CSrt cine and the segmented retrogated prototype CSrg sequence providing the same slices. Functional parameters quantification and image quality rating were performed on SSFPref and CSrg images sets. The edge sharpness, which is an estimate of the edge spread function, was assessed for the three sequences. Results: The mean scan time was: SSFPref = 485.4 ± 83.3 (SD) s (95% CI: 454.3–516.5) and CSrg = 58.3 ± 15.1 (SD) s (95% CI: 53.7–64.2) (p < 0.0001). CSrg subjective image quality score (median: 4; range: 2–4) was higher than the one provided by CSrt (median: 3; range: 2–4; p = 0.0008) and not different from SSFPref overall quality score (median: 4; range: 2–4; p = 0.31). CSrg provided similar LV and RV functional parameters to those assessed with SSFPref (p > 0.05). Edge sharpness was significantly better with CSrg (0.083 ± 0.013 (SD) pixel−1; 95% CI: 0.078–0.087) than with CSrt (0.070 ± 0.011 (SD) pixel−1; 95% CI: 0.066–0.074; p = 0.0004) and not different from the reference technique (0.075 ± 0.016 (SD) pixel−1; 95% CI: 0.069–0.081; p = 0.0516). Conclusions: CSrg cine provides in one minute an accurate quantification of LV and RV functional parameters without compromising subjective and objective image quality.

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
B Longere ◽  
L Grenier ◽  
J Pagniez ◽  
V Silvestri ◽  
A Simeone ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. PURPOSE Real-time compressed sensing cine (CSrt) provides reliable quantifications for both ventricles but impairs image quality . This aim of this study was to assess the accuracy of left (LV) and right ventricular (RV) volumes, ejection fraction and mass quantifications based on a retrogated segmented compressed sensing-fashioned accelerated 2D cine sequence (CSrg). Image quality was also evaluated. METHOD AND MATERIALS Thirty patients were enrolled. Each patient underwent the reference retrogated segmented steady-state free precession cine sequence (SSFPref), the first generation real-time CSrt cine and the segmented retrogated prototype CSrg sequence providing the same numbers and positions of slices. Functional parameters quantification was performed on SSFPref and CSrg images sets. Image quality was assessed for the three sequences by using edge sharpness which is an estimate of the edge spread function. RESULTS Mean scan times were SSFPref = 512 ± 15 s, CSrt = 24 ± 5 s and CSrg = 58 ± 15 s. CSrg provided LV and RV functional parameters (end-systolic, end-diastolic, ejection fraction and LV mass) which were not significantly different from the one assessed with SSFPref (p &gt; 0.05). Edge sharpness was significantly better with CSrg (0.083 ± 0.013 pixel-1) than with CSrt (0.070 ± 0.011 pixel-1; p = 0.0004) and not different from the reference techniques (0.075 ± 0.016 pixel-1; p = 0.0516). Inter and intrarater variabilities demonstrated intraclass correlation coefficients over 0.96. CONCLUSION CSrg cine provides in one minute an accurate quantification of LV and RV functional parameters without compromising the sharpness of myocardial boarders which was impaired by the first-generation real-time compressed sensing sequence. Abstract Figure. Image quality and volumes assessment


2021 ◽  
Vol 10 (15) ◽  
pp. 3274
Author(s):  
Benjamin Longère ◽  
Paul-Edouard Allard ◽  
Christos V Gkizas ◽  
Augustin Coisne ◽  
Justin Hennicaux ◽  
...  

Background and objective: Cardiac magnetic resonance (CMR) is a key tool for cardiac work-up. However, arrhythmia can be responsible for arrhythmia-related artifacts (ARA) and increased scan time using segmented sequences. The aim of this study is to evaluate the effect of cardiac arrhythmia on image quality in a comparison of a compressed sensing real-time (CSrt) cine sequence with the reference prospectively gated segmented balanced steady-state free precession (Cineref) technique regarding ARA. Methods: A total of 71 consecutive adult patients (41 males; mean age = 59.5 ± 20.1 years (95% CI: 54.7–64.2 years)) referred for CMR examination with concomitant irregular heart rate (defined by an RR interval coefficient of variation >10%) during scanning were prospectively enrolled. For each patient, two cine sequences were systematically acquired: first, the reference prospectively triggered multi-breath-hold Cineref sequence including a short-axis stack, one four-chamber slice, and a couple of two-chamber slices; second, an additional single breath-hold CSrt sequence providing the same slices as the reference technique. Two radiologists independently assessed ARA and image quality (overall, acquisition, and edge sharpness) for both techniques. Results: The mean heart rate was 71.8 ± 19.0 (SD) beat per minute (bpm) (95% CI: 67.4–76.3 bpm) and its coefficient of variation was 25.0 ± 9.4 (SD) % (95% CI: 22.8–27.2%). Acquisition was significantly faster with CSrt than with Cineref (Cineref: 556.7 ± 145.4 (SD) s (95% CI: 496.7–616.7 s); CSrt: 23.9 ± 7.9 (SD) s (95% CI: 20.6–27.1 s); p < 0.0001). A total of 599 pairs of cine slices were evaluated (median: 8 (range: 6–14) slices per patient). The mean proportion of ARA-impaired slices per patient was 85.9 ± 22.7 (SD) % using Cineref, but this was figure was zero using CSrt (p < 0.0001). The European CMR registry artifact score was lower with CSrt (median: 1 (range: 0–5)) than with Cineref (median: 3 (range: 0–3); p < 0.0001). Subjective image quality was higher in CSrt than in Cineref (median: 3 (range: 1–3) versus 2 (range: 1–4), respectively; p < 0.0001). In line, edge sharpness was higher on CSrt cine than on Cineref images (0.054 ± 0.016 pixel−1 (95% CI: 0.050–0.057 pixel−1) versus 0.042 ± 0.022 pixel−1 (95% CI: 0.037–0.047 pixel−1), respectively; p = 0.0001). Conclusion: Compressed sensing real-time cine drastically reduces arrhythmia-related artifacts and thus improves cine image quality in patients with arrhythmia.


Author(s):  
Martin Georg Zeilinger ◽  
Marco Wiesmüller ◽  
Christoph Forman ◽  
Michaela Schmidt ◽  
Camila Munoz ◽  
...  

Abstract Objectives To evaluate an image-navigated isotropic high-resolution 3D late gadolinium enhancement (LGE) prototype sequence with compressed sensing and Dixon water-fat separation in a clinical routine setting. Material and methods Forty consecutive patients scheduled for cardiac MRI were enrolled prospectively and examined with 1.5 T MRI. Overall subjective image quality, LGE pattern and extent, diagnostic confidence for detection of LGE, and scan time were evaluated and compared to standard 2D LGE imaging. Robustness of Dixon fat suppression was evaluated for 3D Dixon LGE imaging. For statistical analysis, the non-parametric Wilcoxon rank sum test was performed. Results LGE was rated as ischemic in 9 patients and non-ischemic in 11 patients while it was absent in 20 patients. Image quality and diagnostic confidence were comparable between both techniques (p = 0.67 and p = 0.66, respectively). LGE extent with respect to segmental or transmural myocardial enhancement was identical between 2D and 3D (water-only and in-phase). LGE size was comparable (3D 8.4 ± 7.2 g, 2D 8.7 ± 7.3 g, p = 0.19). Good or excellent fat suppression was achieved in 93% of the 3D LGE datasets. In 6 patients with pericarditis, the 3D sequence with Dixon fat suppression allowed for a better detection of pericardial LGE. Scan duration was significantly longer for 3D imaging (2D median 9:32 min vs. 3D median 10:46 min, p = 0.001). Conclusion The 3D LGE sequence provides comparable LGE detection compared to 2D imaging and seems to be superior in evaluating the extent of pericardial involvement in patients suspected with pericarditis due to the robust Dixon fat suppression. Key Points • Three-dimensional LGE imaging provides high-resolution detection of myocardial scarring. • Robust Dixon water-fat separation aids in the assessment of pericardial disease. • The 2D image navigator technique enables 100% respiratory scan efficacy and permits predictable scan times.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Maria Murad ◽  
Abdul Jalil ◽  
Muhammad Bilal ◽  
Shahid Ikram ◽  
Ahmad Ali ◽  
...  

Magnetic Resonance Imaging (MRI) is an important yet slow medical imaging modality. Compressed sensing (CS) theory has enabled to accelerate the MRI acquisition process using some nonlinear reconstruction techniques from even 10% of the Nyquist samples. In recent years, interpolated compressed sensing (iCS) has further reduced the scan time, as compared to CS, by exploiting the strong interslice correlation of multislice MRI. In this paper, an improved efficient interpolated compressed sensing (EiCS) technique is proposed using radial undersampling schemes. The proposed efficient interpolation technique uses three consecutive slices to estimate the missing samples of the central target slice from its two neighboring slices. Seven different evaluation metrics are used to analyze the performance of the proposed technique such as structural similarity index measurement (SSIM), feature similarity index measurement (FSIM), mean square error (MSE), peak signal to noise ratio (PSNR), correlation (CORR), sharpness index (SI), and perceptual image quality evaluator (PIQE) and compared with the latest interpolation techniques. The simulation results show that the proposed EiCS technique has improved image quality and performance using both golden angle and uniform angle radial sampling patterns, with an even lower sampling ratio and maximum information content and using a more practical sampling scheme.


2019 ◽  
Author(s):  
Sophie Schauman ◽  
Mark Chiew ◽  
Thomas W. Okell

AbstractPurposeTo demonstrate that vessel-selectivity in arterial spin labeling angiography can be achieved without any scan time penalty or noticeable loss of image quality compared to conventional arterial spin labeling angiography.MethodsSimulations on a numerical phantom were used to assess whether the increased sparsity of vessel-encoded angiograms compared to non-vessel-encoded angiograms alone can improve reconstruction results in a compressed sensing framework. Further simulations were performed to study whether the difference in relative sparsity between non-selective and vessel-selective dynamic angiograms were sufficient to achieve similar image quality at matched scan times in the presence of noise. Finally, data were acquired from 5 healthy volunteers to validate the technique in vivo. All data, both simulated and in vivo, were sampled in 2D using a golden angle radial trajectory and reconstructed by enforcing both image domain sparsity and temporal smoothness on the angiograms in a parallel imaging and compressed sensing framework.ResultsRelative sparsity was established as a primary factor governing the reconstruction fidelity. Using the proposed reconstruction scheme, differences between vessel-selective and non-selective angiography were negligible compared to the dominant factor of total scan time in both simulations and in vivo experiments at acceleration factors up to R = 34. The reconstruction quality was not heavily dependent on hand-tuning the parameters of the reconstruction.ConclusionThe increase in relative sparsity of vessel-selective angiograms compared to non-selective angiograms can be leveraged to achieve higher acceleration without loss of image quality, resulting in the acquisition of vessel-selective information at no scan time cost.


2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
K Gil ◽  
KM Zareba ◽  
S Rajpal ◽  
OP Simonetti ◽  
D Addison ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Coronavirus Disease 2019 (COVID-19) poses many workflow challenges for healthcare systems. Elective cardiovascular magnetic resonance (CMR) exams were postponed until safety protocols were instituted. Since reopening, imaging labs are managing COVID-19 safety triaging, exam backlog, and increased referrals, thus innovative solutions for process improvement are needed. Purpose An accelerated compressed sensing (CS) real-time (RT) technique offers dynamic cardiac imaging with high spatial and temporal resolution without image degradation. We sought to evaluate the efficiency of a rapid RT CMR protocol with a goal to decrease scan time without compromising study quality and comprehensiveness. Methods We retrospectively evaluated 219 CMRs (Siemens Magnetom Sola 1.5T) performed 09/01/2020 - 10/15/2020. After excluding 81 exams due to heterogeneous protocols (Figure 1), we analyzed 138 CMR exams using standard cardiomyopathy or myocarditis protocols. CMR studies utilized either a rapid RT short axis (SAX) cine (spatial resolution of 2.5 mm2 or better and temporal resolution of 55 ms or better) or standard breath-held (BH) SAX cine protocol (Figure 2).  Protocols were chosen by the interpreting physician. Previous internal quality control demonstrated similar volumetric quantification between RT and BH SAX cines. RT cines were reconstructed inline using a CS-based method.  We analyzed the length of time needed to complete each protocol and the number of series performed. Statistical analysis included student t-test with p value &lt;0.05 considered significant. Results Of 138 analyzed CMR exams, there were 23 rapid protocols and 115 standard protocols performed. The mean image acquisition time for the rapid protocol was significantly shorter at 26 ± 6 minutes (range 18-44 min) vs 33 ± 6 minutes (range 22-49 min) for the standard protocol, p &lt; 0.001. This represents a mean relative reduction in scan time of 21%. More time was saved in rapid myocarditis (scan time 25 ± 6 min vs 34 ± 6 min, p = 0.01; relative time reduction 26%) vs rapid cardiomyopathy protocols (scan time 27 ± 6 min vs 31 ± 6 min, p = 0.04; relative time reduction 13%). There was no significant difference in the number of series performed (62 ± 14 series in rapid vs 67 ± 11 series in standard protocols, p = 0.09).  T1 and T2 maps constituted the same percentage of acquired images regardless of protocol used (T1 maps 1.8% vs 1.7% for cardiomyopathy, 1.4% vs 1.4% for myocarditis in standard vs rapid protocols respectively; T2 maps 1.8% vs 1.7% for cardiomyopathy, 5.6% vs 5.8% for myocarditis in standard vs rapid protocols respectively). Conclusions A rapid CMR protocol utilizing a CS-based RT imaging is significantly shorter as compared to the standard protocol with adequate diagnostic quality. Rapid CMR protocols are an effective tool for process improvement during the COVID-19 pandemic.


2018 ◽  
Vol 40 (1) ◽  
pp. 92-98 ◽  
Author(s):  
J.E. Vranic ◽  
N.M. Cross ◽  
Y. Wang ◽  
D.S. Hippe ◽  
E. de Weerdt ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengcheng Zhu ◽  
Lizhen Cao ◽  
Zhaoying Wen ◽  
Sinyeob Ahn ◽  
Esther Raithel ◽  
...  

Abstract Background 3D non-contrast high-resolution black-blood cardiovascular magnetic resonance (CMR) (DANTE-SPACE) has been used for surveillance of abdominal aortic aneurysm (AAA) and validated against computed tomography (CT) angiography. However, it requires a long scan time of more than 7 min. We sought to develop an accelerated sequence applying compressed sensing (CS-DANTE-SPACE) and validate it in AAA patients undergoing surveillance. Methods Thirty-eight AAA patients (all males, 73 ± 6 years) under clinical surveillance were recruited for this study. All patients were scanned with DANTE-SPACE (scan time 7:10 min) and CS-DANTE-SPACE (scan time 4:12 min, a reduction of 41.4%). Nine 9 patients were scanned more than 2 times. In total, 50 pairs of images were available for comparison. Two radiologists independently evaluated the image quality on a 1–4 scale, and measured the maximal diameter of AAA, the intra-luminal thrombus (ILT) and lumen area, ILT-to-muscle signal intensity ratio, and the ILT-to-lumen contrast ratio. The sharpness of the aneurysm inner/outer boundaries was quantified. Results CS-DANTE-SPACE achieved comparable image quality compared with DANTE-SPACE (3.15 ± 0.67 vs. 3.03 ± 0.64, p = 0.06). There was excellent agreement between results from the two sequences for diameter/area and ILT ratio measurements (ICCs> 0.85), and for quantifying growth rate (3.3 ± 3.1 vs. 3.3 ± 3.4 mm/year, ICC = 0.95.) CS-DANTE-SPACE showed a higher ILT-to-lumen contrast ratio (p = 0.01) and higher sharpness than DANTE-SPACE (p = 0.002). Both sequences had excellent inter-reader reproducibility for quantitative measurements (ICC > 0.88). Conclusion CS-DANTE-SPACE can reduce scan time while maintaining image quality for AAA imaging. It is a promising tool for the surveillance of patients with AAA disease in the clinical setting.


2020 ◽  
Vol 2020 (9) ◽  
pp. 323-1-323-8
Author(s):  
Litao Hu ◽  
Zhenhua Hu ◽  
Peter Bauer ◽  
Todd J. Harris ◽  
Jan P. Allebach

Image quality assessment has been a very active research area in the field of image processing, and there have been numerous methods proposed. However, most of the existing methods focus on digital images that only or mainly contain pictures or photos taken by digital cameras. Traditional approaches evaluate an input image as a whole and try to estimate a quality score for the image, in order to give viewers an idea of how “good” the image looks. In this paper, we mainly focus on the quality evaluation of contents of symbols like texts, bar-codes, QR-codes, lines, and hand-writings in target images. Estimating a quality score for this kind of information can be based on whether or not it is readable by a human, or recognizable by a decoder. Moreover, we mainly study the viewing quality of the scanned document of a printed image. For this purpose, we propose a novel image quality assessment algorithm that is able to determine the readability of a scanned document or regions in a scanned document. Experimental results on some testing images demonstrate the effectiveness of our method.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Martina Correa Londono ◽  
Nino Trussardi ◽  
Verena C. Obmann ◽  
Davide Piccini ◽  
Michael Ith ◽  
...  

Abstract Background The native balanced steady state with free precession (bSSFP) magnetic resonance angiography (MRA) technique has been shown to provide high diagnostic image quality for thoracic aortic disease. This study compares a 3D radial respiratory self-navigated native MRA (native-SN-MRA) based on a bSSFP sequence with conventional Cartesian, 3D, contrast-enhanced MRA (CE-MRA) with navigator-gated respiration control for image quality of the entire thoracic aorta. Methods Thirty-one aortic native-SN-MRA were compared retrospectively (63.9 ± 10.3 years) to 61 CE-MRA (63.1 ± 11.7 years) serving as a reference standard. Image quality was evaluated at the aortic root/ascending aorta, aortic arch and descending aorta. Scan time was recorded. In 10 patients with both MRA sequences, aortic pathologies were evaluated and normal and pathologic aortic diameters were measured. The influence of artifacts on image quality was analyzed. Results Compared to the overall image quality of CE-MRA, the overall image quality of native-SN-MRA was superior for all segments analyzed (aortic root/ascending, p < 0.001; arch, p < 0.001, and descending, p = 0.005). Regarding artifacts, the image quality of native-SN-MRA remained superior at the aortic root/ascending aorta and aortic arch before and after correction for confounders of surgical material (i.e., susceptibility-related artifacts) (p = 0.008 both) suggesting a benefit in terms of motion artifacts. Native-SN-MRA showed a trend towards superior intraindividual image quality, but without statistical significance. Intraindividually, the sensitivity and specificity for the detection of aortic disease were 100% for native-SN-MRA. Aortic diameters did not show a significant difference (p = 0.899). The scan time of the native-SN-MRA was significantly reduced, with a mean of 05:56 ± 01:32 min vs. 08:51 ± 02:57 min in the CE-MRA (p < 0.001). Conclusions Superior image quality of the entire thoracic aorta, also regarding artifacts, can be achieved with native-SN-MRA, especially in motion prone segments, in addition to a shorter acquisition time.


Sign in / Sign up

Export Citation Format

Share Document