scholarly journals Cardiopulmonary Exercise Test Parameters in Athletic Population: A Review

2021 ◽  
Vol 10 (21) ◽  
pp. 5073
Author(s):  
Reza Mazaheri ◽  
Christian Schmied ◽  
David Niederseer ◽  
Marco Guazzi

Although still underutilized, cardiopulmonary exercise testing (CPET) allows the most accurate and reproducible measurement of cardiorespiratory fitness and performance in athletes. It provides functional physiologic indices which are key variables in the assessment of athletes in different disciplines. CPET is valuable in clinical and physiological investigation of individuals with loss of performance or minor symptoms that might indicate subclinical cardiovascular, pulmonary or musculoskeletal disorders. Highly trained athletes have improved CPET values, so having just normal values may hide a medical disorder. In the present review, applications of CPET in athletes with special attention on physiological parameters such as VO2max, ventilatory thresholds, oxygen pulse, and ventilatory equivalent for oxygen and exercise economy in the assessment of athletic performance are discussed. The role of CPET in the evaluation of possible latent diseases and overtraining syndrome, as well as CPET-based exercise prescription, are outlined.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
B.M.L Rocha ◽  
G.J Lopes Da Cunha ◽  
P.M.D Lopes ◽  
P.N Freitas ◽  
F Gama ◽  
...  

Abstract Background Cardiopulmonary exercise testing (CPET) is recommended in the evaluation of selected patients with Heart Failure (HF). Notwithstanding, its prognostic significance has mainly been ascertained in those with left ventricular ejection fraction (LVEF) <40% (i.e., HFrEF). The main goal of our study was to assess the role of CPET in risk stratification of HF with mid-range (40–49%) LVEF (i.e., HFmrEF) compared to HFrEF. Methods We conducted a single-center retrospective study of consecutive patients with HF and LVEF <50% who underwent CPET from 2003–2018. The primary composite endpoint of death, heart transplant or HF hospitalization was assessed. Results Overall, 404 HF patients (mean age 57±11 years, 78.2% male, 55.4% ischemic HF) were included, of whom 321 (79.5%) had HFrEF and 83 (20.5%) HFmrEF. Compared to the former, those with HFmrEF had a significantly higher mean peak oxygen uptake (pVO2) (20.2±6.1 vs 16.1±5.0 mL/kg/min; p<0.001), lower median minute ventilation/carbon dioxide production (VE/VCO2) [35.0 (IQR: 29.1–41.2) vs 39.0 (IQR: 32.0–47.0); p=0.002) and fewer patients with exercise oscillatory ventilation (EOV) (22.0 vs 46.3%; p<0.001). Over a median follow-up of 28.7 (IQR: 13.0–92.3) months, 117 (28.9%) patients died, 53 (13.1%) underwent heart transplantation, and 134 (33.2%) had at least one HF hospitalization. In both HFmrEF and HFrEF, pVO2 <12 mL/kg/min, VE/VCO2 >35 and EOV identified patients at higher risk for events (all p<0.05). In Cox regression multivariate analysis, pVO2 was predictive of the primary endpoint in both HFmrEF and HFrEF (HR per +1 mL/kg/min: 0.81; CI: 0.72–0.92; p=0.001; and HR per +1 mL/kg/min: 0.92; CI: 0.87–0.97; p=0.004), as was EOV (HR: 4.79; CI: 1.41–16.39; p=0.012; and HR: 2.15; CI: 1.51–3.07; p<0.001). VE/VCO2, on the other hand, was predictive of events in HFrEF but not in HFmrEF (HR per unit: 1.03; CI: 1.02–1.05; p<0.001; and HR per unit: 0.99; CI: 0.95–1.03; p=0.512, respectively). ROC curve analysis demonstrated that a pVO2 >16.7 and >15.8 mL/kg/min more accurately identified patients at lower risk for the primary endpoint (NPV: 91.2 and 60.5% for HFmrEF and HFrEF, respectively; both p<0.001). Conclusions CPET is a useful tool in HFmrEF. Both pVO2 and EOV independently predicted the primary endpoint in HFmrEF and HFrEF, contrasting with VE/VCO2, which remained predictive only in latter group. Our findings strengthen the prognostic role of CPET in HF with either reduced or mid-range LVEF. Funding Acknowledgement Type of funding source: None


2015 ◽  
Vol 5 (3) ◽  
pp. 580-586 ◽  
Author(s):  
Hilary M. DuBrock ◽  
Richard L. Kradin ◽  
Josanna M. Rodriguez-Lopez ◽  
Richard N. Channick

2020 ◽  
Vol 9 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Stefanos Sakellaropoulos ◽  
Dimitra Lekaditi ◽  
Stefano Svab

A robust literature, over the last years, supports the indication of cardiopulmonary exercise testing (CPET) in patients with cardiovascular diseases. Understanding exercise physiology is a crucial component of the critical evaluation of exercise intolerance. Shortness of breath and exercise limitation is often treated with an improper focus, partly because the pathophysiology is not well understood in the frame of the diagnostic spectrum of each subspecialty. A vital field and research area have been cardiopulmonary exercise test in heart failure with preserved/reduced ejection fraction, evaluation of heart failure patients as candidates for LVAD-Implantation, as well as for LVAD-Explantation and ultimately for heart transplantation. All the CPET variables provide synergistic prognostic discrimination. However, Peak VO2 serves as the most critical parameter for risk stratification and prediction of survival rate.


ASAIO Journal ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ander Dorken Gallastegi ◽  
Güneş D. Ergi ◽  
Ümit Kahraman ◽  
Burcu Yağmur ◽  
Ece Çinar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document