scholarly journals Selection Criteria for Determination of Optimal Reconstruction Method for Cu-64 Trastuzumab Dosimetry on Siemens Inveon PET Scanner

2019 ◽  
Vol 8 (4) ◽  
pp. 512 ◽  
Author(s):  
Seonhwa Lee ◽  
Hyeongi Kim ◽  
Ye-rin Kang ◽  
Hyungwoo Kim ◽  
Jung Young Kim ◽  
...  

The goal of this study was to suggest criteria for the determination of the optimal image reconstruction algorithm for image-based dosimetry of Cu-64 trastuzumab PET in a mouse model. Image qualities, such as recovery coefficient (RC), spill-over ratio (SOR), and non-uniformity (NU), were measured according to National Electrical Manufacturers Association (NEMA) NU4-2008. Mice bearing a subcutaneous tumor ( 200 mm 3 , HER2 NCI N87) were injected with monoclonal antibodies (trastuzumab) with Cu-64. Preclinical mouse PET images were acquired at 4 time points after injection (2, 15, 40 and 64 h). Phantom and Cu-64 trastuzumab PET images were reconstructed using various reconstruction algorithms (filtered back projection (FBP), 3D reprojection algorithm (FBP-3DRP), 2D ordered subset expectation maximization (OSEM 2D), and OSEM 3D maximum a posteriori (OSEM3D-MAP)) and filters. The absorbed dose for the tumor and the effective dose for organs for Cu-64 trastuzumab PET were calculated using the OLINDA/EXM program with various reconstruction algorithms. Absorbed dose for the tumor ranged from 923 mGy/MBq to 1830 mGy/MBq with application of reconstruction algorithms and filters. When OSEM2D was used, the effective osteogenic dose increased from 0.0031 to 0.0245 with an increase in the iteration number (1 to 10). In the region of kidney, the effective dose increased from 0.1870 to 1.4100 when OSEM2D was used with iteration number 1 to 10. To determine the optimal reconstruction algorithms and filters, a correlation between RC and NU was plotted and selection criteria (0.9 < RC < 1.0 and < 10% of NU) were suggested. According to the selection criteria, OSEM2D (iteration 1) was chosen for the optimal reconstruction algorithm. OSEM2D (iteration 10) provided 154.7% overestimated effective dose and FBP with a Butterworth filter provided 20.9% underestimated effective dose. We suggested OSEM2D (iteration 1) for the calculation of the effective dose of Cu-64 trastuzumab on an Inveon PET scanner.

2018 ◽  
Vol 11 (02) ◽  
pp. 1750014 ◽  
Author(s):  
Jingjing Yu ◽  
Qiyue Li ◽  
Haiyu Wang

Bioluminescence tomography (BLT) is an important noninvasive optical molecular imaging modality in preclinical research. To improve the image quality, reconstruction algorithms have to deal with the inherent ill-posedness of BLT inverse problem. The sparse characteristic of bioluminescent sources in spatial distribution has been widely explored in BLT and many L1-regularized methods have been investigated due to the sparsity-inducing properties of L1 norm. In this paper, we present a reconstruction method based on L[Formula: see text] regularization to enhance sparsity of BLT solution and solve the nonconvex L[Formula: see text] norm problem by converting it to a series of weighted L1 homotopy minimization problems with iteratively updated weights. To assess the performance of the proposed reconstruction algorithm, simulations on a heterogeneous mouse model are designed to compare it with three representative sparse reconstruction algorithms, including the weighted interior-point, L1 homotopy, and the Stagewise Orthogonal Matching Pursuit algorithm. Simulation results show that the proposed method yield stable reconstruction results under different noise levels. Quantitative comparison results demonstrate that the proposed algorithm outperforms the competitor algorithms in location accuracy, multiple-source resolving and image quality.


Author(s):  
M. Op de Beeck ◽  
D. Van Dyck ◽  
W. Coene

During the last years the renewed interest in focus variation wavefunction reconstruction algorithms has lead to a spectacular improvement of the obtainable resolution in FEG-HRTEM. Unfortunately, it was found that only for thin specimens the reconstructed wavefunction is directly interpretable in terms of the projected atomic potential. Hence there is a need for a direct structure reconstruction algorithm, starting from the reconstructed electron wavefunction. Here we propose a new channelling method in real space that only relies on the very basic concepts of dynamical diffraction in zone axis orientation, and which is very suitable to reveal the correspondence between the wavefunction and the column structure. In this way, a parametrised analytical expression can be obtained so as to reconstruct the projected structure of the object, requiring minimal prior knowledge.In order to develop a sensible structure reconstruction method, a good understanding of the multiple dynamical diffraction process is required.


Author(s):  
Aysenur Yilmaz ◽  
Sibel Yıldız ◽  
Ahmet Çelik ◽  
Uğur Çevik

In this study, radioactivity and heavy metals accumulations in Agaricus campestris mushroom collected from Kahramanmaraş and Erzurum provinces was determined. HPGe gamma detector was used for the determination of radioactivity concentrations. Heavy metal content was measured using a ICP-MS. As radioactive element; natural (238U, 232Th 40K) and artificial radionuclide (137Cs) concentrations were determined. The values of the committed effective dose were calculated. Same measurements were made in soils. Absorbed dose and excess lifetime cancer risk were calculated. Amount of Mg, Al, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Pb206, Pb207 and Pb208 as heavy metals of mushrooms were determined. 238U, 232Th, 40K activity concentrations of mushroom collected from Erzurum was determined as 12.1 ± 0.8, 11.7 ± 0.9, 497.7 ± 17.8 Bq/kg, respectively and 137Cs was not detected by system. 232Th and 40K activity concentrations of mushroom collected from Kahramanmaraş was determined as 13.4 ± 0.5, 134.9 ± 6.3 Bq/kg, respectively, 238U and 137Cs was not detected by system similarly. The value of the committed effective dose collected from Erzurum and Kahramanmaraş were calculated as 75 and 29 μSv respectively and these values were found lower than 290 μSv accepted as world average. Absorbed dose and risk of lifetime cancer for Erzurum was determined as 37.39 nGy/h, 16.5 x 10-5; absorbed dose and excess lifetime cancer risk for Kahramanmaraş was determined as 30.92 nGy/h, 13.3 x 10-5 respectively. Amount of daily intake for each heavy metal was calculated. Radionuclide activity concentrations and accumulations of heavy metal were not founded threaten level to healthy, except from arsenic As (0.025 and 0.039 mg/kg) in mushroom collected from both provinces. They were found a bit higher than upper limit (0.015 mg/kg) in report which is prepared World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO) jointly.


Author(s):  
Ying Tong ◽  
Rui Chen ◽  
Jie Yang ◽  
Minghu Wu

Compressed sensing (CS) provides a method to sample and reconstruct sparse signals far below the Nyquist sampling rate, which has great potential in image/video acquisition and processing. In order to fully exploit the spatial and temporal characteristics of video frame and the coherence between successive frames, we propose a half-pixel interpolation based residual reconstruction method for distributed compressive video sensing (DCVS). At the decoding end, half-pixel interpolation and bi-directional motion estimation helps refine the side information for joint decoding of the non-key-frames. We apply a multi-hypothesis based on residual reconstruction algorithms to reconstruct the non-key-frames. Performance analysis and simulation experiments show that the quality of side information generated by the proposed algorithm is increased by about 1.5dB, with video reconstruction quality increased 0.3~2dB in PSNR, when compared with prior works on DCVS.


Author(s):  
Jingwen Wang ◽  
Xu Wang ◽  
Dan Yang ◽  
Kaiyang Wang

Background: Image reconstruction of magnetic induction tomography (MIT) is a typical ill-posed inverse problem, which means that the measurements are always far from enough. Thus, MIT image reconstruction results using conventional algorithms such as linear back projection and Landweber often suffer from limitations such as low resolution and blurred edges. Methods: In this paper, based on the recent finite rate of innovation (FRI) framework, a novel image reconstruction method with MIT system is presented. Results: This is achieved through modeling and sampling the MIT signals in FRI framework, resulting in a few new measurements, namely, fourier coefficients. Because each new measurement contains all the pixel position and conductivity information of the dense phase medium, the illposed inverse problem can be improved, by rebuilding the MIT measurement equation with the measurement voltage and the new measurements. Finally, a sparsity-based signal reconstruction algorithm is presented to reconstruct the original MIT image signal, by solving this new measurement equation. Conclusion: Experiments show that the proposed method has better indicators such as image error and correlation coefficient. Therefore, it is a kind of MIT image reconstruction method with high accuracy.


2021 ◽  
Vol 5 (3) ◽  
pp. 83
Author(s):  
Bilgi Görkem Yazgaç ◽  
Mürvet Kırcı

In this paper, we propose a fractional differential equation (FDE)-based approach for the estimation of instantaneous frequencies for windowed signals as a part of signal reconstruction. This approach is based on modeling bandpass filter results around the peaks of a windowed signal as fractional differential equations and linking differ-integrator parameters, thereby determining the long-range dependence on estimated instantaneous frequencies. We investigated the performance of the proposed approach with two evaluation measures and compared it to a benchmark noniterative signal reconstruction method (SPSI). The comparison was provided with different overlap parameters to investigate the performance of the proposed model concerning resolution. An additional comparison was provided by applying the proposed method and benchmark method outputs to iterative signal reconstruction algorithms. The proposed FDE method received better evaluation results in high resolution for the noniterative case and comparable results with SPSI with an increasing iteration number of iterative methods, regardless of the overlap parameter.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Johan Economou Lundeberg ◽  
Jenny Oddstig ◽  
Ulrika Bitzén ◽  
Elin Trägårdh

Abstract Background Lung cancer is one of the most common cancers in the world. Early detection and correct staging are fundamental for treatment and prognosis. Positron emission tomography with computed tomography (PET/CT) is recommended clinically. Silicon (Si) photomultiplier (PM)-based PET technology and new reconstruction algorithms are hoped to increase the detection of small lesions and enable earlier detection of pathologies including metastatic spread. The aim of this study was to compare the diagnostic performance of a SiPM-based PET/CT (including a new block-sequential regularization expectation maximization (BSREM) reconstruction algorithm) with a conventional PM-based PET/CT including a conventional ordered subset expectation maximization (OSEM) reconstruction algorithm. The focus was patients admitted for 18F-fluorodeoxyglucose (FDG) PET/CT for initial diagnosis and staging of suspected lung cancer. Patients were scanned on both a SiPM-based PET/CT (Discovery MI; GE Healthcare, Milwaukee, MI, USA) and a PM-based PET/CT (Discovery 690; GE Healthcare, Milwaukee, MI, USA). Standardized uptake values (SUV) and image interpretation were compared between the two systems. Image interpretations were further compared with histopathology when available. Results Seventeen patients referred for suspected lung cancer were included in our single injection, dual imaging study. No statically significant differences in SUVmax of suspected malignant primary tumours were found between the two PET/CT systems. SUVmax in suspected malignant intrathoracic lymph nodes was 10% higher on the SiPM-based system (p = 0.026). Good consistency (14/17 cases) between the PET/CT systems were found when comparing simplified TNM staging. The available histology results did not find any obvious differences between the systems. Conclusion In a clinical setting, the new SiPM-based PET/CT system with a new BSREM reconstruction algorithm provided a higher SUVmax for suspected lymph node metastases compared to the PM-based system. However, no improvement in lung cancer detection was seen.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 164
Author(s):  
Dongxu Wu ◽  
Fusheng Liang ◽  
Chengwei Kang ◽  
Fengzhou Fang

Optical interferometry plays an important role in the topographical surface measurement and characterization in precision/ultra-precision manufacturing. An appropriate surface reconstruction algorithm is essential in obtaining accurate topography information from the digitized interferograms. However, the performance of a surface reconstruction algorithm in interferometric measurements is influenced by environmental disturbances and system noise. This paper presents a comparative analysis of three algorithms commonly used for coherence envelope detection in vertical scanning interferometry, including the centroid method, fast Fourier transform (FFT), and Hilbert transform (HT). Numerical analysis and experimental studies were carried out to evaluate the performance of different envelope detection algorithms in terms of measurement accuracy, speed, and noise resistance. Step height standards were measured using a developed interferometer and the step profiles were reconstructed by different algorithms. The results show that the centroid method has a higher measurement speed than the FFT and HT methods, but it can only provide acceptable measurement accuracy at a low noise level. The FFT and HT methods outperform the centroid method in terms of noise immunity and measurement accuracy. Even if the FFT and HT methods provide similar measurement accuracy, the HT method has a superior measurement speed compared to the FFT method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert Peter Reimer ◽  
Konstantin Klein ◽  
Miriam Rinneburger ◽  
David Zopfs ◽  
Simon Lennartz ◽  
...  

AbstractComputed tomography in suspected urolithiasis provides information about the presence, location and size of stones. Particularly stone size is a key parameter in treatment decision; however, data on impact of reformatation and measurement strategies is sparse. This study aimed to investigate the influence of different image reformatations, slice thicknesses and window settings on stone size measurements. Reference stone sizes of 47 kidney stones representative for clinically encountered compositions were measured manually using a digital caliper (Man-M). Afterwards stones were placed in a 3D-printed, semi-anthropomorphic phantom, and scanned using a low dose protocol (CTDIvol 2 mGy). Images were reconstructed using hybrid-iterative and model-based iterative reconstruction algorithms (HIR, MBIR) with different slice thicknesses. Two independent readers measured largest stone diameter on axial (2 mm and 5 mm) and multiplanar reformatations (based upon 0.67 mm reconstructions) using different window settings (soft-tissue and bone). Statistics were conducted using ANOVA ± correction for multiple comparisons. Overall stone size in CT was underestimated compared to Man-M (8.8 ± 2.9 vs. 7.7 ± 2.7 mm, p < 0.05), yet closely correlated (r = 0.70). Reconstruction algorithm and slice thickness did not significantly impact measurements (p > 0.05), while image reformatations and window settings did (p < 0.05). CT measurements using multiplanar reformatation with a bone window setting showed closest agreement with Man-M (8.7 ± 3.1 vs. 8.8 ± 2.9 mm, p < 0.05, r = 0.83). Manual CT-based stone size measurements are most accurate using multiplanar image reformatation with a bone window setting, while measurements on axial planes with different slice thicknesses underestimate true stone size. Therefore, this procedure is recommended when impacting treatment decision.


Sign in / Sign up

Export Citation Format

Share Document