scholarly journals IMPA2 Downregulation Enhances mTORC1 Activity and Restrains Autophagy Initiation in Metastatic Clear Cell Renal Cell Carcinoma

2020 ◽  
Vol 9 (4) ◽  
pp. 956 ◽  
Author(s):  
Chia-Hao Kuei ◽  
Hui-Yu Lin ◽  
Hsun-Hua Lee ◽  
Che-Hsuan Lin ◽  
Jing-Quan Zheng ◽  
...  

Although mTOR inhibitors have been approved as first-line therapy for treating metastatic clear cell renal cell carcinoma (ccRCC), the lack of useful markers reduces their therapeutic effectiveness. The objective of this study was to estimate if inositol monophosphatase 2 (IMPA2) downregulation refers to a favorable outcome in metastatic ccRCC receiving mTOR inhibitor treatment. Gene set enrichment analysis predicted a significant activation of mTORC1 in the metastatic ccRCC with IMPA2 downregulation. Transcriptional profiling of IMPA2 and mTORC1-related gene set revealed significantly inverse correlation in ccRCC tissues. Whereas the enforced expression of exogenous IMPA2 inhibited the phosphorylation of Akt/mTORC1, artificially silencing IMPA2 led to increased phosphorylation of Akt/mTORC1 in ccRCC cells. The pharmaceutical inhibition of mTORC1 activity by rapamycin reinforced autophagy initiation but suppressed the cellular migration and lung metastatic abilities of IMPA2-silenced ccRCC cells. In contrast, blocking autophagosome formation with 3-methyladenine rescued the mitigated metastatic potential in vitro and in vivo in IMPA2-overexpressing ccRCC cells. Our findings indicated that IMPA2 downregulation negatively activates mTORC1 activity and could be a biomarker for guiding the use of mTOR inhibitors or autophagy inducers to combat metastatic ccRCC in the clinic.

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 847
Author(s):  
I-Jen Chiu ◽  
Yung-Ho Hsu ◽  
Jeng-Shou Chang ◽  
Jou-Chun Yang ◽  
Hui-Wen Chiu ◽  
...  

Clear cell renal cell carcinoma (ccRCC) is the main type of RCC, which is the most common type of malignant kidney tumor in adults. A subpopulation (>30%) of ccRCC patients develop metastasis; however, the molecular mechanism remains largely unknown. Here, we found that LTF, the gene encoding lactotransferrin, is dramatically downregulated in primary tumors compared to normal tissues derived from ccRCC patients deposited in The Cancer Genome Atlas (TCGA) database and is a favorable prognostic marker. Moreover, LTF downregulation appears to be more dominant in metastatic ccRCC. LTF overexpression suppresses migration ability in A498 ccRCC cells with high metastatic potential, whereas LTF knockdown fosters cellular migration in poorly metastatic ccRCC cells. Gene set enrichment analysis demonstrated that LTF expression inversely correlates with the progression of epithelial-mesenchymal transition (EMT) in ccRCC, which was further confirmed by RT-PCR experiments. Therapeutically, the administration of recombinant LTF protein significantly suppresses the cell migration ability and lung metastatic potential of ACHN cells, as well as LTF-silenced A498 cells. The gene knockdown of lipoprotein receptor-related protein 1 (LRP1) robustly blocked recombinant LTF protein-induced inhibition of cellular migration and gene expression of EMT markers in ACHN cells. LTF downregulation and LRP1 upregulation combined predicted a poor overall survival rate in ccRCC patients compared to that with either factor alone. Our findings uncover a new mechanism by which LTF may interact with LRP1 to inhibit metastatic progression in ccRCC and also reveal the therapeutic value of recombinant LTF protein in treating metastatic ccRCC.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zuquan Xiong ◽  
Hongjie Yu ◽  
Yan Ding ◽  
Chenchen Feng ◽  
Hanming Wei ◽  
...  

In the past few years, therapies targeted at the von Hippel-Lindau (VHL) and hypoxia-inducible factor (HIF) pathways, such as sunitinib and sorafenib, have been developed to treat clear cell renal cell carcinoma (ccRCC). However, the majority of patients will eventually show resistance to antiangiogenesis therapies. The purpose of our study was to identify novel pathways that could be potentially used as targets for new therapies. Whole transcriptome sequencing (RNA-Seq) was conducted on eight matched tumor and adjacent normal tissue samples. A novel RUNX1-RUNX1T1 pathway was identified which was upregulated in ccRCC through gene set enrichment analysis (GSEA). We also confirmed the findings based on previously published gene expression microarray data. Our data shows that upregulated of the RUNX1-RUNX1T1 gene set maybe an important factor contributing to the etiology of ccRCC.


2022 ◽  
Vol 11 ◽  
Author(s):  
Xi Zhang ◽  
Xiyi Wei ◽  
Yichun Wang ◽  
Shuai Wang ◽  
Chengjian Ji ◽  
...  

BackgroundIt is well known that chronic inflammation can promote the occurrence and progression of cancer. As a type of proinflammatory death, pyroptosis can recast a suitable microenvironment to promote tumor growth. However, the potential role of pyroptosis in clear cell renal cell carcinoma (ccRCC) remains unclear.MethodsThe transcriptome expression profile and mutation profile data of ccRCC with clinical characteristics included in this study were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Consensus clustering was used for clustering. Gene set enrichment analysis (GSEA) analysis were applied to evaluate the biological mechanisms. Single sample gene set enrichment analysis (ssGSEA) was applied for evaluating the proportion of various immune infiltrating cells. The ESTIMATE algorithm was involved to compute the immune microenvironment scores.ResultsAmong the 17 pyroptosis regulators, a total of 15 pyroptosis regulators were differential expressed between tumor and normal tissues, in which 12 of them emerged strong correlations with prognoses. According to the pyroptosis components, the ccRCC patients were divided into four pyroptosis subtypes with different clinical, molecular, and pathway characteristics. Compared with other clusters, cluster B showed the pyroptosis heat phenotype, while cluster D represented the pyroptosis cold phenotype with poor overall survival. In addition, we performed principal component analysis (PCA) on the differential genes between clusters to construct the pyroptosis index. Furthermore, the pyroptosis index was significantly correlated with survival in different tumor mutation statuses and different grades and stages. Besides, the expression of pyroptosis-related regulators was related to the infiltration of immune cells and the expression of immune checkpoints, among which AIM2 was considered as the most significant immune-related pyroptosis regulator. Ultimately, we found that AIM2 was related to the immune activation pathway and was significantly overexpressed in tumor tissues.ConclusionThis study revealed that pyroptosis regulators and pyroptosis index played an important role in the development and prognoses of ccRCC. Moreover, AIM2 can be used as a predictor of the response of immunotherapy. Assessing the pyroptosis patterns may help evaluate the tumor status and guide immunotherapy strategies.


2020 ◽  
Author(s):  
Wingkeung Yiu ◽  
Can-Xuan Li ◽  
Jie Chen

Abstract Background: Growing evidence has shown that the type VI collagen alpha chain (COL6A) family involved in the tumorigenesis and progression of diverse malignancies; however, its biological roles and potential mechanisms in clear cell renal cell carcinoma (ccRCC) remain unknown. The study was designed to explore the potential mechanisms and functions of COL6As in ccRCC.Methods: ONCOMINE and GEPIA databases were used to compare the transcriptional expression data of COL6As in ccRCC samples and normal renal samples. UALCAN database was utilized to determine the association between clinicopathological features and COL6As expression. Kaplan–Meier method was employed to determine the prognostic value of COL6As mRNA expression in ccRCC. CBioPortal database was used to investigate the genetic alterations of COL6As in ccRCC. Co-expression analyses, functional enrichment analyses, and gene set enrichment analysis (GSEA) were utilized to explore the potential action mechanisms of COL6As in ccRCC. Finally, we estimated the relationship between COL6As expression with immune cell infiltrates.Results: Upregulated transcriptional COL6A2/COL6A3 expression was observed in ccRCC specimens by comparison with noncancerous renal specimens. Patients with increased COL6A2/COL6A3 mRNA expression have a poor clinical outcome and unfavorable prognosis. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA analyses showed that COL6A2/COL6A3 might promote the tumorigenesis and progression of ccRCC by involving in several cancer-related pathways, such as axon guidance, focal adhesion, ECM receptor interaction. Besides, we found that COL6A2/COL6A3 expression was significantly associated with immune infiltration levels in ccRCC.Conclusions: COL6A2 and COL6A3 could act as candidate prognostic biomarkers and therapeutic targets in ccRCC. However, further experimental work was required to validate the conclusions.


2021 ◽  
Vol 350 ◽  
pp. S107
Author(s):  
F.S. Amaro ◽  
J. Pinto ◽  
S. Rocha ◽  
A.M. Araújo ◽  
V.M. Gonçalves ◽  
...  

2020 ◽  
Vol 10 ◽  
Author(s):  
Xiang Ju ◽  
Yangyang Sun ◽  
Feng Zhang ◽  
Xiaohui Wei ◽  
Zhenguo Wang ◽  
...  

With the rapid development of biotechnology, long noncoding RNAs (lncRNAs) have exhibited good application prospects in the treatment of cancer, and they may become new treatment targets for cancer. This study aimed to explore lncRNAs in clear cell renal cell carcinoma (ccRCC). Differentially expressed lncRNAs in 54 pairs of ccRCC tissues and para-carcinoma tissues were analyzed in The Cancer Genome Atlas (TCGA), and the most significant lncRNAs were selected and verified in ccRCC tissues. We found that lncRNA LINC02747 was highly expressed in ccRCC (P < 0.001) and was closely related to high TNM stage (P = 0.006) and histological grade (P = 0.004) and poor prognosis of patients (P < 0.001). In vivo and in vitro experiments confirmed that LINC02747 could promote the proliferation of ccRCC cells. We also found that LINC02747 regulated the proliferation of RCC cells by adsorbing miR-608. Subsequent mechanistic research showed that miR-608 is downregulated in ccRCC (P < 0.001), and overexpression of miR-608 inbibited the proliferation of RCC cells. Moreover, we found that TFE3 is a direct target gene of miR-608. MiR-608 regulated the proliferation of RCC cells by inhibiting TFE3. In conclusion, LINC02747 upregulates the expression of TFE3 by adsorbing miR-608, ultimately promoting the proliferation of ccRCC cells. The above findings indicate that LINC02747 acts as an oncogene in ccRCC and may be developed as a molecular marker for the diagnosis and prognosis of ccRCC. The LINC02747/miR-608/TFE3 pathway may become a new therapeutic target for ccRCC.


2020 ◽  
Vol 9 (9) ◽  
pp. 2740
Author(s):  
Virginia Albiñana ◽  
Eunate Gallardo-Vara ◽  
Isabel de Rojas-P ◽  
Lucia Recio-Poveda ◽  
Tania Aguado ◽  
...  

Von Hippel–Lindau (VHL), is a rare autosomal dominant inherited cancer in which the lack of VHL protein triggers the development of multisystemic tumors such us retinal hemangioblastomas (HB), CNS-HB, and clear cell renal cell carcinoma (ccRCC). ccRCC ranks third in terms of incidence and first in cause of death. Standard systemic therapies for VHL-ccRCC have shown limited response, with recurrent surgeries being the only effective treatment. Targeting of β2-adrenergic receptor (ADRB) has shown therapeutic antitumor benefits on VHL-retinal HB (clinical trial) and VHL-CNS HB (in vitro). Therefore, the in vitro and in vivo antitumor benefits of propranolol (ADRB-1,2 antagonist) and ICI-118,551 (ADRB-2 antagonist) on VHL−/− ccRCC primary cultures and 786-O tumor cell lines have been addressed. Propranolol and ICI-118,551 activated apoptosis inhibited gene and protein expression of HIF-2α, CAIX, and VEGF, and impaired partially the nuclear internalization of HIF-2α and NFĸB/p65. Moreover, propranolol and ICI-118,551 reduced tumor growth on two in vivo xenografts. Finally, ccRCC patients receiving propranolol as off-label treatment have shown a positive therapeutic response for two years on average. In summary, propranolol and ICI-118,551 have shown antitumor benefits in VHL-derived ccRCC, and since ccRCCs comprise 63% of the total RCCs, targeting ADRB2 becomes a promising drug for VHL and other non-VHL tumors.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhuo Ye ◽  
Jiachen Duan ◽  
Lihui Wang ◽  
Yanli Ji ◽  
Baoping Qiao

Abstract Background Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype with a poor prognosis. LncRNA-LET is a long non-coding RNA (lncRNA) that is down-regulated in ccRCC tissues. However, its role in ccRCC development and progress is unclear. Methods LncRNA-LET expression was detected in ccRCC tissues and ccRCC cells using quantitative real-time PCR. The overexpression and knockdown experiments were performed in ccRCC cells and xenograft mouse model to evaluate role of lncRNA-LET. Cell cycle, apoptosis and JC-1 assays were conducted via flow cytometer. The protein levels were measured through western blot analysis and the interaction between lncRNA-LET and miR-373-3p was identified via luciferase reporter assay. Results LncRNA-LET expression was lower in ccRCC tissues than that in the matched adjacent non-tumor tissues (n = 16). In vitro, lncRNA-LET overexpression induced cell cycle arrest, promoted apoptosis and impaired mitochondrial membrane potential, whereas its knockdown exerted opposite effects. Moreover, we noted that lncRNA-LET may act as a target for oncomiR miR-373-3p. In contrast to lncRNA-LET, miR-373-3p expression was higher in ccRCC tissues. The binding between lncRNA-LET and miR-373-3p was validated. Two downstream targets of miR-373-3p, Dickkopf-1 (DKK1) and tissue inhibitor of metalloproteinase-2 (TIMP2), were positively regulated by lncRNA-LET in ccRCC cells. MiR-373-3p mimics reduced lncRNA-LET-induced up-regulation of DKK1 and TIMP2 levels, and attenuated lncRNA-LET-mediated anti-tumor effects in ccRCC cells. In vivo, lncRNA-LET suppressed the growth of ccRCC xenograft tumors. Conclusion These findings indicate that lncRNA-LET plays a tumor suppressive role in ccRCC by regulating miR-373-3p.


Sign in / Sign up

Export Citation Format

Share Document