scholarly journals Preparation of ZrO2/Graphene Oxide/TiO2 Composite Photocatalyst and Its Studies on Decomposition of Organic Matter

2021 ◽  
Vol 6 (1) ◽  
pp. 9
Author(s):  
Yu-Hsun Nien ◽  
Jhih-Fong Chen ◽  
Cai-Yin Fang ◽  
Ming-Sheng Liu

Water polluted by organic dyes is a serious environmental problem. In response to this, the aim of this research is to degrade dye wastewater using a modified photocatalyst. Since sunlight only has less than 5% UV energy, for a general photocatalyst, using sunlight for excitation to decompose organic pollutants is not an effective way. Therefore, we manufactured the modified photocatalyst by zirconium dioxide, graphene oxide, and titanium dioxide. This was to better improve the photo-degradation efficiency for the degradation of organic pollutants. The modified photocatalyst was analyzed by X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), Scanning Electron Microscope (SEM), and Energy-dispersive X-ray spectroscopy (EDS). The results demonstrated that the modified photocatalyst can be activated by the absorption of visible light. Additionally, the band gap of the modified photocatalyst would decrease. The photodegradation percentage of the modified photocatalyst under visible light (Philips TL-D 8W/865 fluorescent tube) for 4 h reached up to 49.92%. At the third test after ultrasonic washing for the cyclic test, the photodegradation percentage of the modified photocatalyst could still maintain at 47.71%. This indicates that the modified photocatalyst has good stability and reusability, and so this can be reused in this regard.

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Workneh M. Shume ◽  
H. C. Ananda Murthy ◽  
Enyew Amare Zereffa

Even though the photocatalytic processes are a good technology for treatment of toxic organic pollutants, the majority of current photocatalysts cannot utilize sunlight sufficiently to realize the decomposition of these organic pollutants. As stated by various researchers, metal oxide nanoparticles have a significant photocatalytic performance under visible light source. Among various chemical and physical methods used to synthesize nanostructured silver oxide, green synthetic route is a cheaper and environmental friendly method. To confirm the optimum production of Ag2O NPs, effect of pH, extract concentration, metal ion concentration, and contact time were optimized. The structure, morphology, crystallinity, size, purity, elemental composition, and optical properties of obtained Ag2O NPs were characterized by different techniques, such as scanning electron microscopy (SEM), transmission electron microscope (HRTEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectrophotometer accordingly as revealed by our literature review. The photocatalytic performance of the synthesized nanocrystalline Ag2O by photocatalytic degradation of organic dyes under visible light irradiation has been discussed thoroughly in this review. Many past studies revealed that organic dyes and pollutants are decomposed completely by green synthesized Ag2O NPs under irradiation of visible light.


2013 ◽  
Vol 575-576 ◽  
pp. 225-228 ◽  
Author(s):  
Li Ying Huang ◽  
Rong Xian Zhang ◽  
Xiu Juan Sun ◽  
Xiao Nong Cheng

A novel composite photocatalyst g-C3N4/α-Fe2O3 was prepared through calcination method. The photocatalysts were characterized by thermogravimetric analysis (TG), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The obtained g-C3N4/α-Fe2O3 composites show high efficiency for the degradation of Rhodamine B (RHB). The optimum photocatalytic activity of g-C3N4/Fe2O3 at a g-C3N4 content of 8.6% under visible light irradiation is almost 4.8 times as high as that of pure α-Fe2O3. The enhancement in visible light photoactivity of g-C3N4/α-Fe2O3 composites was attributed to the introduction of g-C3N4 and the interaction between g-C3N4 and α-Fe2O3.


Author(s):  
Titikshya Mohapatra ◽  
Sakshi Manekar ◽  
Vijyendra Kumar Sahu ◽  
Ashwini Kumar Soni ◽  
Sudip Banerjee ◽  
...  

Abstract This study reports a green approach for the modification of titanium dioxide (TiO2) nanoparticles with immobilization of silver nanoparticles. One of the natural sources i.e., Mangifera indica leaf extract was utilized as reducing and capping agent for the fabrication of Ag-TiO2 nanocatalyst. Further, the surface morphology and band-gap energy of prepared Ag-TiO2 were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and UV–Vis spectroscopy. Also, it was characterized by X-ray Powder Diffraction (XRD) which provides the information regarding the crystallinity of the Ag-TiO2. Subsequently, photo activity of Ag-TiO2 was investigated for the degradation of methylene blue (MB) dye wastewater through visible light driven photoreactor. The Ag-TiO2 provided highest (68%) of photo-degradation efficiency within 110 min for 7.81 × 10−5 mol/L initial MB concentration at pH 8 by using 0.19 g/L photocatalyst. Further, addition of 10 mM H2O2 boost up the MB photodegradation to 74%. The kinetic study confirmed the MB degradation followed first order rate of reaction.


2017 ◽  
Author(s):  
◽  
Sharista Raghunath

The presence of dyes in effluent poses various environmental as well as health hazards for many organisms. Although various remediation strategies have been implemented to reduce their effect, dyes still manage to infiltrate into the environment and hence new strategies are required to address some of the problems. This study investigated the innovation of two cationic water-soluble polymers viz., Proline-Epichlorohydrin-Ethylenediamine Polymer (PEP) and Thiazolidine-Epichlorohydrin-Ethylenediamine Polymer (TEP) that were used to remediate selected synthetic dyes from synthetic effluent by adsorption and dye reduction. Both polymers were synthesized using monomers of a secondary amine, epichlorohydrin and ethylenediamine and were subsequently characterized and modified and their remediation potential studied. In the first study, PEP was synthesized and characterized by 1H-NMR Spectroscopy, FT-IR Spectroscopy, dynamic light scattering, and thermogravimetric analysis (TGA). Thereafter PEP was modified with bentonite clay, by simple mixing of the reactants, to form a Proline-Epichlorohydrin-Ethylenediamine Polymer-bentonite composite (PRO-BEN); it was characterized by FT-IR Spectroscopy, scanning electron microscopy (SEM)/ energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Adsorption studies were then undertaken with a synthetic effluent containing three textile dyes, viz., Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow (RY 145). Various conditions were investigated including pH of the solution, temperature, sodium chloride concentration, initial dye concentration and the dosage of adsorbent used. The experimental data for all dyes followed a Langmuir isotherm. The adsorption process was found to be pseudo-second order. According to the thermodynamic parameters, the adsorption of the dyes was classified as physisorption and the reaction was spontaneous and exothermic. The data were also compared using studies with alumina as an adsorbent. Results showed that PRO-BEN exhibited better absorptivity and desorption than alumina making its use a better recyclable remediation strategy for the removal of organic dyes in wastewater treatment plants. In the second study, TEP was synthesized and then characterized by FT-IR Spectroscopy, 1H-NMR Spectroscopy, TGA and DLS. Thereafter, TEP was used to prepare TEP capped gold nanoparticles (TEP-AuNPs). Herein, two methods were investigated: the Turkevich method and an adaptation of the Turkevich method using bagasse extract. The TEP-AuNPs was characterized by FT-IR Spectroscopy, SEM, EDX, DLS and TEM. Thereafter the reduction of each of Allura Red, Congo Red and Methylene Blue was investigated with the TEP-AuNPs for its catalytic activity toward dye reduction. This study showed that the batch of AuNPs prepared by the Turkevich method had higher rates of dye reduction compared with AuNPs prepared using bagasse extract. Also the quantity of TEP used as capping agent greatly influenced the size, shape and surface charge of the nanoparticles as well as their catalytic performance: the Vroman effect explained this behavior of the TEP-AuNPs. It was finally concluded that whilst PRO-BEN, in the first study, showed excellent dye remediation properties, the second study on TEP-AuNPs showed good catalytic activity for the reduction of selected dyes, however, it was more effective at lower polymer concentration. Finally, both materials displayed good potential for the clean-up of selected synthetic dyes from synthetic effluents.


2021 ◽  
Vol 1035 ◽  
pp. 1043-1049
Author(s):  
Di Xiang ◽  
Chang Long Shao

A simple route has been developed for the synthesis of Ag2O/ZnO heterostructures and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) spectroscopy analysis. Considering the porous structure of Ag2O/ZnO, the photocatalytic degradation for the organic dyes, such as eosin red (ER), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB), under visible light irradiation was investigated in detail. Noticeably, Ag2O/ZnO just took 40 min to degrade 96 % MB. The rate of degradation using the Ag2O/ZnO heterostructures was 2.3 times faster than that of the bare porous ZnO nanospheres under visible light irradiation due to that the recombination of the photogenerated charge was inhibited greatly in the p-type Ag2O and n-type ZnO semiconductor. So the Ag2O/ZnO heterostuctures showed the potential application on environmental remediation.


2018 ◽  
Vol 281 ◽  
pp. 878-884
Author(s):  
Zhi Wei Zhou ◽  
Ling Fang Qiu ◽  
Xiao Bin Qiu ◽  
Shu Wang Duo

In order to enhance hole/electron separation and charge transfer in photocatalysts, the heterostructured g-C3N4/CoAPO-5 hybrids materials were synthesized via a simple grinding method and were investigated using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The optical properties of g-C3N4/CoAPO-5 hybrids materials were measured by ultraviolet-visible diffuse-reflectance spectroscopy (DRS), photoluminescence (PL) spectra and ultraviolet-visible absorption (UV-Vis) spectra. Under visible-light illumination, this work shows the heterogeneous g-C3N4/CoAPO-5 hybrids present a superior photocatalytic activity.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1341 ◽  
Author(s):  
Ruiqi Wang ◽  
Duanyang Li ◽  
Hailong Wang ◽  
Chenglun Liu ◽  
Longjun Xu

S-doped Bi2MoO6 nanosheets were successfully synthesized by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), elemental mapping spectroscopy, photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectra (UV-vis DRS). The photo-electrochemical performance of the samples was investigated via an electrochemical workstation. The S-doped Bi2MoO6 nanosheets exhibited enhanced photocatalytic activity under visible light irradiation. The photo-degradation rate of Rhodamine B (RhB) by S-doped Bi2MoO6 (1 wt%) reached 97% after 60 min, which was higher than that of the pure Bi2MoO6 and other S-doped products. The degradation rate of the recovered S-doped Bi2MoO6 (1 wt%) was still nearly 90% in the third cycle, indicating an excellent stability of the catalyst. The radical-capture experiments confirmed that superoxide radicals (·O2−) and holes (h+) were the main active substances in the photocatalytic degradation of RhB by S-doped Bi2MoO6.


Nanoscale ◽  
2014 ◽  
Vol 6 (13) ◽  
pp. 7303-7311 ◽  
Author(s):  
Jianjun Guo ◽  
Han Zhou ◽  
Shuxin Ouyang ◽  
Tetsuya Kako ◽  
Jinhua Ye

A new Ag3PO4/nitridized Sr2Nb2O7 (N: 0–6.18 wt%) heterojunction was designed to eliminate gaseous pollutants under visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document