scholarly journals Expanding the Junction: New Insights into Non-Occluding Roles for Septate Junction Proteins during Development

2021 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Clinton Rice ◽  
Oindrila De ◽  
Haifa Alhadyian ◽  
Sonia Hall ◽  
Robert E. Ward

The septate junction (SJ) provides an occluding function for epithelial tissues in invertebrate organisms. This ability to seal the paracellular route between cells allows internal tissues to create unique compartments for organ function and endows the epidermis with a barrier function to restrict the passage of pathogens. Over the past twenty-five years, numerous investigators have identified more than 30 proteins that are required for the formation or maintenance of the SJs in Drosophila melanogaster, and have determined many of the steps involved in the biogenesis of the junction. Along the way, it has become clear that SJ proteins are also required for a number of developmental events that occur throughout the life of the organism. Many of these developmental events occur prior to the formation of the occluding junction, suggesting that SJ proteins possess non-occluding functions. In this review, we will describe the composition of SJs, taking note of which proteins are core components of the junction versus resident or accessory proteins, and the steps involved in the biogenesis of the junction. We will then elaborate on the functions that core SJ proteins likely play outside of their role in forming the occluding junction and describe studies that provide some cell biological perspectives that are beginning to provide mechanistic understanding of how these proteins function in developmental contexts.

2000 ◽  
Vol 75 (1) ◽  
pp. 13-23 ◽  
Author(s):  
ERIC BONNIVARD ◽  
CLAUDE BAZIN ◽  
BEATRICE DENIS ◽  
DOMINIQUE HIGUET

Temporal surveys of hobo transposable elements in natural populations reveal a historical pattern suggesting a recent world-wide invasion of D. melanogaster by these transposons, perhaps following a recent horizontal transfer. To clarify the dynamics of hobo elements in natural populations, and thus to provide further data for our understanding of the hobo invasion, TPE tandem repeats, observed in the polymorphic S region of the element, were used as molecular markers. The number of TPE repeats was studied in 101 current populations from around the world, and in 63 strains collected in the past. This revealed a geographical distribution which seems to have been stable since the beginning of the 1960s. This distribution is compatible with a number of hypotheses for the dynamics of hobo elements. We propose a scenario based on an invasion in two stages: first, a complete invasion by elements with three TPE repeats, followed by the beginning of a new invasion involving hobo elements with five or seven repeats.


2010 ◽  
Vol 298 (5) ◽  
pp. G625-G633 ◽  
Author(s):  
Wei Zhong ◽  
Craig J. McClain ◽  
Matthew Cave ◽  
Y. James Kang ◽  
Zhanxiang Zhou

Disruption of the intestinal barrier is a causal factor in the development of alcoholic endotoxemia and hepatitis. This study was undertaken to determine whether zinc deficiency is related to the deleterious effects of alcohol on the intestinal barrier. Mice were pair fed an alcohol or isocaloric liquid diet for 4 wk, and hepatitis was detected in association with elevated blood endotoxin level. Alcohol exposure significantly increased the permeability of the ileum but did not affect the barrier function of the duodenum or jejunum. Reduction of tight-junction proteins at the ileal epithelium was detected in alcohol-fed mice although alcohol exposure did not cause apparent histopathological changes. Alcohol exposure significantly reduced the ileal zinc concentration in association with accumulation of reactive oxygen species. Caco-2 cell culture demonstrated that alcohol exposure increases the intracellular free zinc because of oxidative stress. Zinc deprivation caused epithelial barrier disruption in association with disassembling of tight junction proteins in the Caco-2 monolayer cells. Furthermore, minor zinc deprivation exaggerated the deleterious effect of alcohol on the epithelial barrier. In conclusion, epithelial barrier dysfunction in the distal small intestine plays an important role in alcohol-induced gut leakiness, and zinc deficiency attributable to oxidative stress may interfere with the intestinal barrier function by a direct action on tight junction proteins or by sensitizing to the effects of alcohol.


Genome ◽  
2007 ◽  
Vol 50 (2) ◽  
pp. 137-141 ◽  
Author(s):  
Sylvia Glen Levine ◽  
Suchot Sunday ◽  
Ruth E. Dörig ◽  
Beat Suter ◽  
Paul Lasko

Drosophila mutants have played an important role in elucidating the physiologic function of genes. Large-scale projects have succeeded in producing mutations in a large proportion of Drosophila genes. Many mutant fly lines have also been produced through the efforts of individual laboratories over the past century. In an effort to make some of these mutants more useful to the research community, we systematically mapped a large number of mutations affecting genes in the proximal half of chromosome arm 2L to more precisely defined regions, defined by deficiency intervals, and, when possible, by individual complementation groups. To further analyze regions 36 and 39–40, we produced 11 new deficiencies with gamma irradiation, and we constructed 6 new deficiencies in region 30–33, using the DrosDel system. trans-heterozygous combinations of deficiencies revealed 5 additional functions, essential for viability or fertility.


2011 ◽  
Vol 301 (1) ◽  
pp. L40-L49 ◽  
Author(s):  
Leslie A. Mitchell ◽  
Christian E. Overgaard ◽  
Christina Ward ◽  
Susan S. Margulies ◽  
Michael Koval

Alveolar barrier function depends critically on the claudin family tight junction proteins. Of the major claudins expressed by alveolar epithelial cells, claudin (Cldn)-3 and Cldn-4 are the most closely related by amino acid homology, yet they differ dramatically in the pattern of expression. Previously published reports have shown that Cldn-3 is predominantly expressed by type II alveolar epithelial cells; Cldn-4 is expressed throughout the alveolar epithelium and is specifically upregulated in response to acute lung injury. Using primary rat alveolar epithelial cells transduced with yellow fluorescent protein-tagged claudin constructs, we have identified roles for Cldn-3 and Cldn-4 in alveolar epithelial barrier function. Surprisingly, increasing expression of Cldn-3 decreased alveolar epithelial barrier function, as assessed by transepithelial resistance and dye flux measurements. Conversely, increasing Cldn-4 expression improved alveolar epithelial transepithelial resistance compared with control cells. Other alveolar epithelial tight junction proteins were largely unaffected by increased expression of Cldn-3 and Cldn-4. Taken together, these results demonstrate that, in the context of the alveolar epithelium, Cldn-3 and Cldn-4 have different effects on paracellular permeability, despite significant homology in their extracellular loop domains.


Sign in / Sign up

Export Citation Format

Share Document