scholarly journals Energetic and Biomechanical Contributions for Longitudinal Performance in Master Swimmers

2020 ◽  
Vol 5 (2) ◽  
pp. 37
Author(s):  
Daniel A. Marinho ◽  
Maria I. Ferreira ◽  
Tiago M. Barbosa ◽  
José Vilaça-Alves ◽  
Mário J. Costa ◽  
...  

Background: The current study aimed to verify the changes in performance, physiological and biomechanical variables throughout a season in master swimmers. Methods: Twenty-three master swimmers (34.9 ± 7.4 years) were assessed three times during a season (December: M1, March: M2, June: M3), in indoor 25 m swimming pools. An incremental 5 × 200 m test was used to evaluate the speed at 4 mmol·L−1 of blood lactate concentration (sLT), maximal oxygen uptake (VO2max), peak blood lactate ([La-]peak) after the test, stroke frequency (SF), stroke length (SL), stroke index (SI) and propelling efficiency (ηp). The performance was assessed in the 200 m front crawl during competition. Results: Swimming performance improved between M1, M2 (2%, p = 0.03), and M3 (4%, p < 0.001). Both sLT and VO2max increased throughout the season (4% and 18%, p < 0.001, respectively) but not [La-]peak. While SF decreased 5%, SL, SI and ηp increased 5%, 7%, and 6% (p < 0.001) from M1 to M3. Conclusions: Master swimmers improved significantly in their 200 m front crawl performance over a season, with decreased SF, and increased SL, ηp and SI. Despite the improvement in energetic variables, the change in performance seemed to be more dependent on technical than energetic factors.

2020 ◽  
Vol 15 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Ana Gay ◽  
Gracia López-Contreras ◽  
Ricardo J. Fernandes ◽  
Raúl Arellano

Purpose: To observe changes in performance, physiological, and general kinematic variables induced by the use of wetsuits vs swimsuits in both swimming-pool and swimming-flume conditions. Methods: In a randomized and counterbalanced order, 33 swimmers (26.46 [11.72] y old) performed 2 × 400-m maximal front crawl in a 25-m swimming pool (with wetsuit and swimsuit), and their mean velocities were used later in 2 swimming-flume trials with both suits. Velocity, blood lactate concentration, heart rate (HR), Borg scale (rating of perceived exertion), stroke rate, stroke length (SL), stroke index, and propelling efficiency were evaluated. Results: The 400-m performance in the swimming pool was 0.07 m·s−1 faster when using the wetsuit than when using the swimsuit, evidencing a reduction of ∼6% in time elapsed (P < .001). Maximal HR, maximal blood lactate concentration, rating of perceived exertion, stroke rate, and propelling efficiency were similar when using both swimsuits, but SL and stroke index presented higher values with the wetsuit in both the swimming pool and the swimming flume. Comparing swimming conditions, maximal HR and maximal blood lactate concentration were lower, and SL, stroke index, and propelling efficiency were higher when swimming in the flume than when swimming in the pool with both suits. Conclusions: The 6% velocity improvement was the result of an increase of 4% in SL. Swimmers reduced stroke rate and increased SL to benefit from the hydrodynamic reduction of the wetsuit and increase their swimming efficiency. Wetsuits might be utilized during training seasons to improve adaptations while swimming.


Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 23
Author(s):  
Gavriil G. Arsoniadis ◽  
Ioannis S. Nikitakis ◽  
Petros G. Botonis ◽  
Ioannis Malliaros ◽  
Argyris G. Toubekis

Background: Physiological and biomechanical parameters obtained during testing need validation in a training setting. The purpose of this study was to compare parameters calculated by a 5 × 200-m test with those measured during an intermittent swimming training set performed at constant speed corresponding to blood lactate concentration of 4 mmol∙L−1 (V4). Methods: Twelve competitive swimmers performed a 5 × 200-m progressively increasing speed front crawl test. Blood lactate concentration (BL) was measured after each 200 m and V4 was calculated by interpolation. Heart rate (HR), rating of perceived exertion (RPE), stroke rate (SR) and stroke length (SL) were determined during each 200 m. Subsequently, BL, HR, SR and SL corresponding to V4 were calculated. A week later, swimmers performed a 5 × 400-m training set at constant speed corresponding to V4 and BL-5×400, HR-5×400, RPE-5×400, SR-5×400, SL-5×400 were measured. Results: BL-5×400 and RPE-5×400 were similar (p > 0.05), while HR-5×400 and SR-5×400 were increased and SL-5×400 was decreased compared to values calculated by the 5 × 200-m test (p < 0.05). Conclusion: An intermittent progressively increasing speed swimming test provides physiological information with large interindividual variability. It seems that swimmers adjust their biomechanical parameters to maintain constant speed in an aerobic endurance training set of 5 × 400-m at intensity corresponding to 4 mmol∙L−1.


Proceedings ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 15
Author(s):  
Arsoniadis ◽  
Nikitakis ◽  
Botonis ◽  
Malliaros ◽  
Toubekis

AIM: progressively increasing swimming speed test (5 × 200 m) is used to calculate the speed corresponding to blood lactate concentration of 4 mmol/L (V4) and related physiological and biomechanical parameters. The purpose of this study was to compare the calculated by a 5 × 200-m test parameters with those obtained during an intermittent swimming training set (5 × 400-m) performed at constant speed corresponding to V4. MATERIAL & METHOD: Twelve competitive male swimmers (age, 19 ± 2 years; height, 178 ± 8 cm; body mass, 74.4 ± 10.1 kg) performed a 5 × 200-m front crawl test reaching maximum speed in the last effort. Blood lactate concentration (BL) was measured after each 200 m, and heart rate (HR), stroke rate (SR), and stroke length (SL) were determined during each 200 m. V4 was calculated by interpolation using the individual speed vs. BL, and subsequently HR, SR, SL corresponding to V4 were calculated (HR-V4, SR-V4, SL-V4). One week later, swimmers performed 5 × 400-m at constant speed corresponding to V4. During the 5 × 400-m test, BL (BL-5 × 400) was measured after the 1st, 3rd and 5th repetitions, while HR (HR-5 × 400) was recorded continuously. SR and SL were measured in each 400-m repetition, and mean values were calculated (SR-5 × 400 and SL-5 × 400). RESULTS: V4 and HR-V4 were not different from speed and HR-5 × 400 during the 5 × 400-m test (1.30 ± 0.10 vs. 1.29 ± 0.10 m/s; 160 ± 14 vs. 166 ± 13 b/min, both p > 0.05). BL-5 × 400 was not different from 4 mmol/L (4.9 ± 2.6 mmol/L, p > 0.05). SR was increased and SL was decreased during 5 × 400 m compared to the values corresponding to V4 (SR-V4, 28.9 ± 3.8 vs. SR-5 × 400, 34.5 ± 3.4 strokes/min; SL-V4, 2.38 ± 0.33 vs. SL-5 × 400, 2.25 ± 0.30 m/cycle, both p < 0.05). A Bland-and-Altman plot indicated agreement between variables obtained by the 5 × 200-m and 5 × 400-m tests but with great range of variation (bias: BL, −1.0 ± 2.6 mmol/L; HR, −7 ± 12 b/min; SR, −5.6 ± 3.3 strokes/min; SL, 0.13 ± 0.09 m/cycle). CONCLUSIONS: An intermittent, with progressively increasing speed, swimming test provides physiological information to coaches to apply during an intermittent constant-speed swimming training set at intensity corresponding to BL of 4 mmol/L with large inter-individual variability. It seems that the 5 × 200-m test does not provide valid results for the biomechanical parameters.


1997 ◽  
Vol 9 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Michael Chia ◽  
Neil Armstrong ◽  
David Childs

Twenty-five girls and 25 boys (mean age 9.7 ± 0.3 years) each completed a 20- and 30-s Wingate Anaerobic Test (WAnT). Oxygen uptake during the WAnTs, and postexercise blood lactate samples were obtained. Inertia and load-adjusted power variables were higher (18.6–20.1% for peak, and 6.7–7.5% for mean power outputs, p < .05) than the unadjusted values for both the 20- and 30-s WAnTs. The adjusted peak power values were higher (7.7–11.6%, p < .05) in both WAnTs when integrated over 1-s than over 5-s time periods. The aerobic contributions to the tests were lower (p < .05) in the 20-s WAnT (13.7–35.7%) than in the 30-s WAnT (17.7–44.3%) for assumed mechanical efficiencies of 13% and 30%. Postexercise blood lactate concentration after the WAnTs peaked by 2 min. No gender differences (p > .05) in anaerobic performances or peak blood lactate values were detected.


2015 ◽  
Vol 40 (6) ◽  
pp. 623-631 ◽  
Author(s):  
Florian Azad Engel ◽  
Billy Sperlich ◽  
Christian Stockinger ◽  
Sascha Härtel ◽  
Klaus Bös ◽  
...  

This study characterized the impact of high-intensity interval training on the kinetics of blood lactate and performance in trained boys and men. Twenty-one boys (11.4 ± 0.8 years) and 19 men (29.4 ± 5.0 years) performed a set of four 30-s sprints with 2-min of rest and a single 30-s sprint on 2 separate occasions (randomized order) with assessment of performance. Blood lactate was assayed after each sprint and during 30 min of recovery from both tests. The individual time-curves of blood lactate concentration were fitted to the biexponential function as follows: [Formula: see text], where the velocity parameters γ1and γ2reflect the capacity to release lactate from the previously active muscle into the blood and to subsequently eliminate lactate from the organism, respectively. In both tests, peak blood lactate concentration was significantly lower in the boys (four 30-s sprints: 12.2 ± 3.6 mmol·L−1; single 30-s sprint: 8.7 ± 1.8 mmol·L−1) than men (four 30-s sprints: 16.1 ± 3.3 mmol·L−1; single 30-s sprint: 11.5 ± 2.1; p < 0.001). The boys exhibited faster γ1(1.4531 ± 0.65 min; p < 0.001) and γ2(0.059 ± 0.023 min; p = 0.01) in the single 30-s sprint and faster γ2(0.049 ± 0.016 min; p = 0.01) in the four 30-s sprints. The worsening of performance from the first to the last of the four 30-s sprints was less pronounced in boys (9.2% ± 13.9%) than men (19.2% ± 11.5%; p = 0.01). In the present study boys, when compared with men, exhibited lower Peak blood lactate concentration; less pronounced decline in performance during the sprints concomitantly with more rapid release and elimination during the single 30-s sprint; and faster elimination of lactate following the four 30-s sprints.


1997 ◽  
Vol 9 (3) ◽  
pp. 210-222 ◽  
Author(s):  
Peter Pfitzinger ◽  
Patty Freedson

Part 1 reviews the literature concerning peak blood lactate responses to exercise in children. After a brief overview of lactate metabolism, an analysis is presented comparing children to adults regarding peak blood lactate concentration. Possible factors accounting for lower blood lactate concentrations during maximal exercise in children are considered.


Author(s):  
Subir Gupta ◽  
Arkadiusz Stanula ◽  
Asis Goswami

Purpose: To determine (1) the time of arrival of peak blood lactate concentration ([BLa]peak) followed by various track events and (2) significant correlation, if any, between average velocity and [BLa]peak in these events. Methods: In 58 under-20 male track athletes, heart rate was recorded continuously and blood lactate concentration was determined at various intervals following 100-m (n = 9), 200-m (n = 8), 400-m (flat) (n = 9), 400-m hurdles (n = 8), 800-m (n = 9), 1500-m (n = 8), 3000-m steeplechase (n = 7), and 5000-m (n = 10) runs. Results: The [BLa]peak, in mmol/L, was recorded highest following the 400-m run (18.27 [3.65]) followed by 400-m hurdles (16.25 [3.14]), 800-m (15.53 [3.25]), 1500-m (14.71 [3.00]), 200-m (14.42 [3.40]), 3000-m steeplechase (11.87 [1.48]), 100-m (11.05 [2.36]), and 5000-m runs (8.65 [1.60]). The average velocity of only the 400-m run was found to be significantly correlated (r = .877, p < 0.05) with [BLa]peak. The arrival time of [BLa]peak following 100-m, 200-m, 400-m, 400-m hurdles, 800-m, 1500-m, 3000-m steeplechase, and 5000-m runs was 4.44 (0.83), 4.13 (0.93), 4.22 (0.63), 3.75 (0.83), 3.34 (1.20), 2.06 (1.21), 1.71 (1.44), and 1.06 (1.04) minutes, respectively, of the recovery period. Conclusion: In under-20 runners, (1) [BLa]peak is highest after the 400-m run, (2) the time of appearance of [BLa]peak varies from one event to another but arrives later after sprint events than longer distances, and (3) the 400-m (flat) run is the only event wherein the performance is significantly correlated with the [BLa]peak.


1996 ◽  
Vol 80 (2) ◽  
pp. 685-692 ◽  
Author(s):  
B. Grassi ◽  
M. Marzorati ◽  
B. Kayser ◽  
M. Bordini ◽  
A. Colombini ◽  
...  

Peak blood lactate ([Labl]peak) and blood lactate concentration ([Labl]) vs. workload (W) relationships during acclimatization to altitude and in the deacclimatization were evaluated in 10 Caucasian lowlanders at sea level (SL0); after approximately 1 wk (Alt1wk), 3 wk (Alt3wk), and 5 wk (Alt5wk) at 5,050 m; and weekly during the first 5 wk after return to sea level (SL1wk-SL5wk). Incremental bicycle ergometer exercises (30 W added every 4 min up to exhaustion) were performed. At Alt1wk and at Alt5wk, the experiments were repeated in hypobaric normoxia (Alt1wk-O2 and Alt5wk-O2). [Labl] was determined at rest and during the last approximately 30 s of each W. [Labl]peak was taken as the highest [Labl] during recovery. Acid-base status (pH and concentration of HCO-3 in arterialized capillary blood) was determined at rest. Mean [Labl]peak values were 11.5 (SL0), 8.0 (Alt1wk), 6.4 (Alt3wk), 6.3 (Alt5wk), 8.0 (SL1wk), 9.4 (SL2wk), 10.8 (SL3wk), 11.3 (SL4wk), and 11.6 (SL5wk) mM. At Alt1wk-O2 and Alt5wk-O2, peak W increased, compared with Alt1wk and Alt5wk, whereas no changes were observed for [Labl]peak. [Labl] vs. W was shifted to the left (i.e., higher [Labl] values were found for the same W) at Alt1wk compared with SL0 and partially shifted back to the right (i.e., lower [Labl] values were found for the same W) at Alt3wk and Alt5wk. At Alt1wk-O2 and Alt5wk-O2, [Labl] vs. W values were superimposed on that at SL0. At SL1wk-SL5wk, [Labl] vs. W values were shifted to the right compared with that at SL0. At Alt1wk, a condition of respiratory alkalosis was found, which was only partially compensated for during acclimatization. At SL1wk, the acid-base status was back to normal. We conclude that 1) the reduced [Labl]peak at altitude is still present for 2-3 wk after return from altitude; is not attributable to reduced peak W nor to hypoxia per se, nor to a reduced buffer capacity; alternatively, it could be related to some central determinants of fatigue. 2) The [Labl] vs. W leftward shift at altitude was due to hypoxia per se. 3) The factor(s) responsible for the [Labl] vs. W partial rightward shift during acclimatization could still be effective during the first weeks after return to sea level.


Sign in / Sign up

Export Citation Format

Share Document