scholarly journals A Comparative Analysis for 2D Object Recognition: A Case Study with Tactode Puzzle-Like Tiles

2021 ◽  
Vol 7 (4) ◽  
pp. 65
Author(s):  
Daniel Silva ◽  
Armando Sousa ◽  
Valter Costa

Object recognition represents the ability of a system to identify objects, humans or animals in images. Within this domain, this work presents a comparative analysis among different classification methods aiming at Tactode tile recognition. The covered methods include: (i) machine learning with HOG and SVM; (ii) deep learning with CNNs such as VGG16, VGG19, ResNet152, MobileNetV2, SSD and YOLOv4; (iii) matching of handcrafted features with SIFT, SURF, BRISK and ORB; and (iv) template matching. A dataset was created to train learning-based methods (i and ii), and with respect to the other methods (iii and iv), a template dataset was used. To evaluate the performance of the recognition methods, two test datasets were built: tactode_small and tactode_big, which consisted of 288 and 12,000 images, holding 2784 and 96,000 regions of interest for classification, respectively. SSD and YOLOv4 were the worst methods for their domain, whereas ResNet152 and MobileNetV2 showed that they were strong recognition methods. SURF, ORB and BRISK demonstrated great recognition performance, while SIFT was the worst of this type of method. The methods based on template matching attained reasonable recognition results, falling behind most other methods. The top three methods of this study were: VGG16 with an accuracy of 99.96% and 99.95% for tactode_small and tactode_big, respectively; VGG19 with an accuracy of 99.96% and 99.68% for the same datasets; and HOG and SVM, which reached an accuracy of 99.93% for tactode_small and 99.86% for tactode_big, while at the same time presenting average execution times of 0.323 s and 0.232 s on the respective datasets, being the fastest method overall. This work demonstrated that VGG16 was the best choice for this case study, since it minimised the misclassifications for both test datasets.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042007
Author(s):  
Xiaowen Liu ◽  
Juncheng Lei

Abstract Image recognition technology mainly includes image feature extraction and classification recognition. Feature extraction is the key link, which determines whether the recognition performance is good or bad. Deep learning builds a model by building a hierarchical model structure like the human brain, extracting features layer by layer from the data. Applying deep learning to image recognition can further improve the accuracy of image recognition. Based on the idea of clustering, this article establishes a multi-mix Gaussian model for engineering image information in RGB color space through offline learning and expectation-maximization algorithms, to obtain a multi-mix cluster representation of engineering image information. Then use the sparse Gaussian machine learning model on the YCrCb color space to quickly learn the distribution of engineering images online, and design an engineering image recognizer based on multi-color space information.


2021 ◽  
Author(s):  
Md Abu Rumman Refat ◽  
Md. Al Amin ◽  
Chetna Kaushal ◽  
Mst Nilufa Yeasmin ◽  
Md Khairul Islam

2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Abstract This paper provides the state of the art of data science in economics. Through a novel taxonomy of applications and methods advances in data science are investigated. The data science advances are investigated in three individual classes of deep learning models, ensemble models, and hybrid models. Application domains include stock market, marketing, E-commerce, corporate banking, and cryptocurrency. Prisma method, a systematic literature review methodology is used to ensure the quality of the survey. The findings revealed that the trends are on advancement of hybrid models as more than 51% of the reviewed articles applied hybrid model. On the other hand, it is found that based on the RMSE accuracy metric, hybrid models had higher prediction accuracy than other algorithms. While it is expected the trends go toward the advancements of deep learning models.


Author(s):  
Hari Kishan Kondaveeti ◽  
Gonugunta Priyatham Brahma ◽  
Dandhibhotla Vijaya Sahithi

Deep learning (DL), a part of machine learning (ML), comprises a contemporary technique for processing the images and analyzing the big data with promising outcomes. Deep learning methods are successfully being used in various sectors to gain better results. Agriculture sector is one of the sectors that could be benefitted from the deep learning techniques since the current agriculture techniques cannot keep up with the rapid growth in population. In this chapter, the recent trends in the applications of deep learning techniques in the agricultural sector and the survey of the research efforts that employ deep learning techniques are going to be discussed. Also, the models that are implemented are going to be analyzed and compared with the other existing models.


Author(s):  
Roopa B. Hegde ◽  
Vidya Kudva ◽  
Keerthana Prasad ◽  
Brij Mohan Singh ◽  
Shyamala Guruvare

2019 ◽  
Vol 9 (21) ◽  
pp. 4604 ◽  
Author(s):  
Larabi-Marie-Sainte ◽  
Aburahmah ◽  
Almohaini ◽  
Saba

Diabetes is one of the most common diseases worldwide. Many Machine Learning (ML) techniques have been utilized in predicting diabetes in the last couple of years. The increasing complexity of this problem has inspired researchers to explore the robust set of Deep Learning (DL) algorithms. The highest accuracy achieved so far was 95.1% by a combined model CNN-LSTM. Even though numerous ML algorithms were used in solving this problem, there are a set of classifiers that are rarely used or even not used at all in this problem, so it is of interest to determine the performance of these classifiers in predicting diabetes. Moreover, there is no recent survey that has reviewed and compared the performance of all the proposed ML and DL techniques in addition to combined models. This article surveyed all the ML and DL techniques-based diabetes predictions published in the last six years. In addition, one study was developed that aimed to implement those rarely and not used ML classifiers on the Pima Indian Dataset to analyze their performance. The classifiers obtained an accuracy of 68%–74%. The recommendation is to use these classifiers in diabetes prediction and enhance them by developing combined models.


Sign in / Sign up

Export Citation Format

Share Document