scholarly journals Low-Complexity Loeffler DCT Approximations for Image and Video Coding

2018 ◽  
Vol 8 (4) ◽  
pp. 46
Author(s):  
Diego F. G. Coelho ◽  
Renato J. Cintra ◽  
Fábio M. Bayer ◽  
Sunera Kulasekera ◽  
Arjuna Madanayake ◽  
...  

This paper introduced a matrix parametrization method based on the Loeffler discrete cosine transform (DCT) algorithm. As a result, a new class of 8-point DCT approximations was proposed, capable of unifying the mathematical formalism of several 8-point DCT approximations archived in the literature. Pareto-efficient DCT approximations are obtained through multicriteria optimization, where computational complexity, proximity, and coding performance are considered. Efficient approximations and their scaled 16- and 32-point versions are embedded into image and video encoders, including a JPEG-like codec and H.264/AVC and H.265/HEVC standards. Results are compared to the unmodified standard codecs. Efficient approximations are mapped and implemented on a Xilinx VLX240T FPGA and evaluated for area, speed, and power consumption.

2021 ◽  
Vol 30 ◽  
pp. 2378-2393
Author(s):  
Meng Wang ◽  
Shiqi Wang ◽  
Junru Li ◽  
Li Zhang ◽  
Yue Wang ◽  
...  

2018 ◽  
Vol 30 (3) ◽  
pp. 1363-1394 ◽  
Author(s):  
Raíza S. Oliveira ◽  
Renato J. Cintra ◽  
Fábio M. Bayer ◽  
Thiago L. T. da Silveira ◽  
Arjuna Madanayake ◽  
...  

2021 ◽  
Author(s):  
Jianhua Wang ◽  
Feng Lin ◽  
Jing Zhao ◽  
Yongbing Long

Abstract HEVC (High Efficiency Video Coding), as one of the newest international video coding standard, can achieve about 50% bit rate reduction compared with H.264/AVC (Advanced Video Coding) at the same perceptual quality due to the use of flexible CTU(coding tree unit) structure, but at the same time, it also dramatically adds the higher computational complexity for HEVC. With the aim of reducing the computational complexity, a texture grouping and statistical optimization based mode prediction decision algorithm is proposed for HEVC intra coding in this paper. The contribution of this paper lies in the fact that we successfully use the texture information grouping and statistical probability optimization technology to rapidly determine the optimal prediction mode for the current PU, which can reduce many unnecessary prediction and calculation operations of HCost (Hadamard Cost) and RDCost (Rate Distortion Cost) in HEVC, thus saving much computation complexity for HEVC. Specially, in our scheme, firstly we group 35 intra prediction modes into 5 subsets of candidate modes list according to its texture information of edge in the current PU, and each subset only contains 11 intra prediction modes, which can greatly reduce many traversing number of candidate mode in RMD (Rough Mode Decision) from 35 to 11 prediction modes; Secondly we use the statistical probability of the first candidate modes in candidate modes list as well as MPM selected as the optimal prediction mode to reduce the number of candidate modes in RDO(Rate Distortion Optimization), which can reduce the number of candidate modes from 3+MPM or 8+MPM to 2 candidate modes; At last, we use the number of candidate modes determined above to quickly find the optimal prediction mode with the minimum RDCost by RDO process. As a result, the computational complexity of HEVC can be efficiently reduced by our proposed scheme. And the simulation results of our experiments show that our proposed intra mode prediction decision algorithm based on texture information grouping and statistical probability optimization in this paper can reduce about 46.13% computational complexity on average only at a cost of 0.67% bit rate increase and 0.056db PSNR decline compared with the standard reference HM16.1 algorithm.


Author(s):  
MyungJun Kim ◽  
Yung-Lyul Lee

High Efficiency Video Coding (HEVC) uses an 8-point filter and a 7-point filter, which are based on the discrete cosine transform (DCT), for the 1/2-pixel and 1/4-pixel interpolations, respectively. In this paper, discrete sine transform (DST)-based interpolation filters (IF) are proposed. The first proposed DST-based IFs (DST-IFs) use 8-point and 7-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively. The final proposed DST-IFs use 12-point and 11-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively. These DST-IF methods are proposed to improve the motion-compensated prediction in HEVC. The 8-point and 7-point DST-IF methods showed average BD-rate reductions of 0.7% and 0.3% in the random access (RA) and low delay B (LDB) configurations, respectively. The 12-point and 11-point DST-IF methods showed average BD-rate reductions of 1.4% and 1.2% in the RA and LDB configurations for the Luma component, respectively.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1671 ◽  
Author(s):  
Alexander Griffiths ◽  
Johannes Herrnsdorf ◽  
Christopher Lowe ◽  
Malcolm Macdonald ◽  
Robert Henderson ◽  
...  

Communicating information at the few photon level typically requires some complexity in the transmitter or receiver in order to operate in the presence of noise. This in turn incurs expense in the necessary spatial volume and power consumption of the system. In this work, we present a self-synchronised free-space optical communications system based on simple, compact and low power consumption semiconductor devices. A temporal encoding method, implemented using a gallium nitride micro-LED source and a silicon single photon avalanche photo-detector (SPAD), demonstrates data transmission at rates up to 100 kb/s for 8.25 pW received power, corresponding to 27 photons per bit. Furthermore, the signals can be decoded in the presence of both constant and modulated background noise at levels significantly exceeding the signal power. The system’s low power consumption and modest electronics requirements are demonstrated by employing it as a communications channel between two nano-satellite simulator systems.


Sign in / Sign up

Export Citation Format

Share Document