scholarly journals In-Situ Fretting Wear Analysis of Electrical Connectors for Real System Applications

2019 ◽  
Vol 3 (2) ◽  
pp. 47 ◽  
Author(s):  
Arpith Siddaiah ◽  
Ashish K. Kasar ◽  
Vishal Khosla ◽  
Pradeep L. Menezes

The tribological behavior of electrical contacts, especially separable type electrical connectors at low contact loads, are considered. The reliability of these connectors has been a major concern due to the fretting phenomenon that can lead to an unacceptable increase in contact resistance. This study analyzes various aspects of the fretting mechanism from a tribological perspective where friction and wear are the primary cause of degradation in electrical components. With the use of precise tribological equipment (high data acquisition rate of 5000 Hz), the electrical contact resistance and coefficient of friction at the contact interface are measured. The measurements were made in-situ for a simulated fretting environment under various constant loading conditions. It was observed that low contact loads (1 N) and low fretting frequency (1 Hz) leads to a high degree of fluctuation in the coefficient of friction. However, for the same conditions, the lowest wear rate and electrical contact resistance were observed. The reason behind this could be due to the lack of continuous electrical contact and a high degree of fretting frequency under low contact loads, ultimately leading to extended periods of an open circuit. Experimental analysis indicates the existence of an optimum loading condition at which the fretting wear effect is at its minimum. Detailed analysis of post fretting surface roughness, coating wear, and wear debris is conducted, as well as transfer film formations to explain the mechanism of fretting observed.

2000 ◽  
Vol 15 (7) ◽  
pp. 1591-1599 ◽  
Author(s):  
M. Z. Huq ◽  
C. Butaye ◽  
J-P. Celis

Material damage caused by fretting wear is of significant concern in many engineering applications. This paper describes the design and performance of a new machine for the laboratory investigation of fretting wear under oscillating normal force (fretting mode II). The test machine uses an electromagnetic actuator to impose an oscillating normal force between the contacting bodies at a constant force amplitude over a wide range of frequencies. The principle of the actuation mechanism and the fretting wear induced with this particular wear test configuration are outlined in detail. Normal force and electrical contact resistance were measured on-line during fretting mode II wear tests. The performance of the wear test machine is illustrated by data obtained for different materials combinations, namely, hard materials, such as high-speed steel and (Ti,Al)N coatings oscillating against alumina ball counterbodies, and soft materials, such as a tin coating oscillating against the same. In general, wearing of the counterbodies was observed in the slip region. It has been observed that hard coatings and bulk ceramics are prone to fretting fatigue cracking. The evolution of electrical contact resistance in the case of the self-mated soft tin coatings tested under fretting mode II conditions is also reported.


Author(s):  
Dinesh G. Bansal ◽  
Jeffrey L. Streator

An experiment is conducted to investigate the role of surface roughness on the coefficient of friction and contact resistance of sliding electrical contacts. A hemispherical pin is sliding along both smooth and rough 2-meter rail surface. Tests are performed at both low and moderate sliding speed and for a range of electrical current densities, ranging from 0 to about 12 GA/m2. It was found that surface roughness had a significant influence on the coefficient of friction, with the smoother surfaces exhibiting higher coefficients of friction. Contact resistance, on the other hand, did not show as strong an effect of surface roughness, except for a few parameter combinations. At the higher current densities studied (>10 GA/m2), it was found that the contact resistance values tended to be on the order of 1 mΩ, independent of load, speed and roughness. This convergence may be due to presence of liquid metal film at the interface, which established ideal electrical contact.


Author(s):  
Bobby G. Watkins ◽  
Jeffrey Streator

Sliding electrical contacts are subject to surface damage and wear, which can be enhanced by the heating at the interface arising from electrical contact resistance. For example, in electromagnetic launcher (EML) technology, thermally assisted wear processes can result in unacceptable levels of material loss at the armature-rail interface. The control of the interface tribology in sliding electrical contacts requires an understanding of the Joule heating in the vicinity of the interface. In the current study, a multiphysics numerical simulation is conducted of transient heat conduction in both a stationary and a sliding electrical contact. The interface under investigation consists of a flat-ended aluminum cylindrical pin sliding against an aluminum rail. Electrical contact resistance is modeled by introducing a thin layer of high resistivity between the pin and the rail. Results show that shortly after sliding has commenced, (1) the maximum temperature rise occurs in the bulk of the pin rather than at the interface, (2) the bulk of the Joule heat goes into the rail, and (3) that sliding can have a significant effect on the temperature field, even when the speed is quite low.


1993 ◽  
Vol 5 (3) ◽  
pp. 292-298
Author(s):  
Yoshitada Watanabe ◽  

A low rotational frequency sliding tester which could measure electrical contact resistance and coefficient of friction simultaneously was trially fabricated. Relations between electrical contact resistance and coefficients of friction were investigated by making sliding test on clean copper and surface oxidized copper contacts respectively, which were used relatively frequently in industries. As far as the measurement work made this time, of which rotational frequency was low, was concerned, it was found that the heat generation due to mechanical friction was low and the heat generation due to Joule's heat in the case of sliding clean contact surfaces was also low because of low contact resistance. It was, however, found that CU²0, etc. were formed due to rapid progress of oxidation by the generation of Joule's heat at the contact surfaces, of which real contact areas were extremely small, being roughened along with the increase of the sliding frequency. On the other hand, it was further found that although the existence of oxides in advance at the sliding surface extremely lowered the coefficient of friction (0.07 for example) in which the oxidized film indicating contrarily (70mΩ for example). It was presumed that formations and destroys of oxidation film were repeated by flow of electric current at the contact spot to cause Fritting Phenomenon.


Author(s):  
D. J. Dickrell ◽  
M. T. Dugger

Surface contamination has long been known to affect the performance of devices that utilize contacting electrodes. Electrical contact degradation is insensitive to the specific nature of the surface contamination, in that formation of any dielectric material at contact points will result in increased contact resistance. This phenomenon is particularly detrimental in microelectromechanical system (MEMS) electrical contacts, where contact forces are limited and may be insufficient to disrupt surface films. Increases in electrical contact resistance with cyclic operation is a major source of reliability problems associated with MEMS electrical contacts. Silicone oil can act as a highly effective lubricant for sliding MEMS surfaces, increasing operational lifetime for devices with interacting surfaces. However, silicone is also a known source of electrical contact surface contamination, readily decomposing into insulating species when sufficiently energized [1–3]. Even though silicone oil immersed electrical contacts have been successfully used in large contact force electrical contacts, the performance and reliability implications of using silicone-immersed low-force MEMS electrical contacts are not well characterized. The subject of this study was to determine if hot-switched metal contacts immersed in silicone oil will degrade similarly to contacts know to degrade in a non-immersed environment. Electrical contact resistance degradation originating from arcing or metal-bridge-evaporation induced decomposition of surface contamination has been observed previously [4]. Silicone oil immersed low-force electrical contacts were made using a modified nano-indentation apparatus. A schematic of the contact zone is shown in Fig. 1. The apparatus was able to measure electrical contact resistance and adhesion of Au-coated spheres contacting silicone oil-contaminated Au-metallized silicon wafers. The contact forces selected were similar to normal loads achievable in MEMS devices. Figure 2. shows the electrical contact resistance degradation of a silicone oil immersed gold-gold contact vs. the same uncontaminated contact obtained from the experimental apparatus. The data points are the averaged resistance values during the period of maximum applied load, 100 μN in this case. The calculated Hertzian contact area (neglecting roughness effects) was 2.1 μm. The open-circuit voltage was set at 3.3 V and the in-contact current was limited to 3 mA. An individual contact cycle data point taken from Fig. 2, displaying the contact force and resistance versus time, is shown in Fig. 3. The resistance averaged over the peak load remains ∼1.1 Ω, even though during periods of low contact force the contact resistance is several orders of magnitude higher than at peak load. The asymmetry of the contact resistance in Fig. 3 suggests that an interfacial contaminant layer was ruptured during loading, creating adherent metallic contacts and allowing for lower resistance at smaller contact loads. This load-supporting, dielectric layer continues to evolve until, by cycle 20, the conductivity of the contact surfaces has been completely inhibited. Surface analysis of the contaminated surfaces was performed in order to ascertain the composition of the electrical contact interface. Relationships between surface contamination, mechanical stress and electrical contact resistance degradation will be discussed relating to the use of silicone oil in MEMS electrical contacts.


Author(s):  
Dinesh G. Bansal ◽  
Jeffrey L. Streator

Electrical contact resistance is important to the performance of electrical switches and other current-carrying interfaces. This study investigates the behavior of electrical contact resistance for an aluminum sphere-on-flat contact as s function of current through the interface. It is observed that the contact resistance may either increase or decrease with increasing current, depending on the current level as well as the current history. At low current levels the voltage drop across the interface increases initially with increasing current until it saturates, after which the voltage level remains constant. If the current is increased beyond the value corresponding to saturation, a subsequent decrease in current yields a corresponding decrease in voltage, so that the associated current cycle shows substantial hysteresis. However, subsequent cycles of current are reversible so long as the voltage remains below the saturation point. Such behavior suggests that irreversible morphological changes occur at the interface when the current exceeds the level associated with the attainment of voltage saturation.


Sign in / Sign up

Export Citation Format

Share Document