scholarly journals Experimental Analysis of Wave Overtopping: A New Small Scale Laboratory Dataset for the Assessment of Uncertainty for Smooth Sloped and Vertical Coastal Structures

2019 ◽  
Vol 7 (7) ◽  
pp. 217 ◽  
Author(s):  
Hannah E Williams ◽  
Riccardo Briganti ◽  
Alessandro Romano ◽  
Nicholas Dodd

Most physical model tests carried out to quantify wave overtopping are conducted using a wave energy spectrum, which is then used to generate a free surface wave time series at the wave paddle. This method means that an infinite number of time series can be generated, but, due to the expense of running physical models, often only a single time series is considered. The aim of this work is to investigate the variation in the main overtopping measures when multiple wave times series generated from the same spectrum are used. Physical model tests in a flume measuring 15 m (length) by 0.23 m (width) with an operating depth up to 0.22 m were carried out using a stochastic approach on two types of structures (a smooth slope and a vertical wall), and a variety of wave conditions. Results show variation of overtopping discharge, computed by normalising the range of the discharges at a certain wave condition with the maximum value of the discharge in the range up to 10 % , when the same wave time series is used, but this range increases to 75 % when different time series are used. This variation is found to be of a similar magnitude to both the one found with similar experiments looking at the phenomena in numerical models, and that specified by the confidence bounds in empirical methods.

Author(s):  
Wouter Ockeloen ◽  
Coen Kuiper ◽  
Sjoerd van den Steen

The 'Afsluitdijk' is a 32 km enclosure dam which separates the Wadden sea and the Lake IJssel. The dam currently undergoes a major rehabilitation to meet the requirements with regard to water safety. The Dutch Ministry of infrastructure and Water Management (Rijkswaterstaat division) has commissioned Levvel, a consortium of BAM, Van Oord and Rebel, to prepare the design and carry out the reconstruction of the dam including sluices and highway. The project includes reinforcement of the armour layers and wave overtopping reduction. As part of the contract Rijkswaterstaat prescribed the contractor (Levvel) to verify the design with large scale physical model tests (min. 1:3 scale). These tests were carried out in the Delta Flume of Deltares. Prior to the large scale tests, smaller scale tests (1:20) have been carried out to optimize the design with regard to armour stability and wave overtopping. The research described here focuses on the wave overtopping.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/kPga0wVCCIE


2012 ◽  
Vol 1 (33) ◽  
pp. 34 ◽  
Author(s):  
Stefanie Lorke ◽  
Babette Scheres ◽  
Holger Schüttrumpf ◽  
Antje Bornschein ◽  
Reinhard Pohl

Flow processes like flow depths and flow velocities give important information about erosion and infiltration processes, which can lead to an unstable dike structure and consequently to dike failure. Up to now several physical model tests on wave run-up and wave overtopping are available to adjust and improve design formula for different dike structures. This kind of physical model tests have been performed in the here presented project FlowDike. Its main purpose is to consider two new aspects that could influence the assessment of wave run-up and wave overtopping as well as the flow processes on dikes which have not been investigated yet: longshore current and wind. Especially in estuaries and along coasts, the effect of tidal and storm induced currents combined with local wind fields can influence the incoming wave parameters at the dike toe as well as the wave run-up height, the wave overtopping rate and the flow processes on dikes. This paper will focus on these flow processes on dike slopes and dike crests on an 1:6 sloped dike influenced by oblique wave attack and longshore current.


1988 ◽  
Vol 1 (21) ◽  
pp. 166 ◽  
Author(s):  
W. Burger ◽  
H. Oumeraci ◽  
H.W. Partenscky

Due to the increase of ship sizes in recent decades a number of harbours and terminals have been built in deeper waters. Accordingly, the structures which have to provide protection against wave action become higher, too. In most cases, these protective structures are of the rubble mound type. Under such conditions the flow induced by waves within the breakwater and the related geotechnical behaviour of the rubble mound fill become more significant fcr the overall stability and should be considered in the design. In addition, it is known that the scales usually adopted in hydraulic models (1:30 to 1:60) for investigating the stability of large rubble mound breakwaters generally lead to scale effects with respect to the flow field inside the breakwater. This means that small-scale model tests are not appropriate for investigating the internal flow patterns or for evaluating the pore pressure field induced by the incident waves in,the core material. because of the uncontrolled conditions in the prototype, and since the actual permeability of the prototype rubble mound fill cannot be predicted (segregation, settlement, variation in grading, etc.), the use of large-scale physical models seems to be the most promising method for basic investigations of this kind. Moreover, the results of such largescale model tests may be used to validate the usual smaller scale models and to calibrate numerical models. Therefore, it is one of the objectives of our research programme on rubble mound breakwaters, which started in 1987, to concentrate on the evaluation of the wave-induced flow and pore pressure distribution within the breakwater.


2020 ◽  
Vol 8 (6) ◽  
pp. 446 ◽  
Author(s):  
Weiqiu Chen ◽  
Alberto Marconi ◽  
Marcel R. A. van Gent ◽  
Jord J. Warmink ◽  
Suzanne J. M. H. Hulscher

The average overtopping discharge is an important parameter for the design and reinforcement of dikes. Rock armour on the waterside slopes and berms of dikes is widely used to reduce the wave overtopping discharge by introducing slope roughness and dissipation of energy in the permeable armour layer. However, methods for estimating the influence of a rock berm and roughness of rock armour at dikes on the average overtopping discharge still need to be developed and/or validated. Therefore, this study aims to develop empirical equations to quantify the reductive influence of rock armour on wave overtopping at dikes. Empirical equations for estimating the effects of rock berms and roughness are derived based on the analysis of experimental data from new physical model tests. The influence of roughness of the rock armour applied on parts of waterside slopes is estimated by introducing the location weighting coefficients. Results show that the newly derived equations to predict the average overtopping discharge at dikes lead to a significantly better performance within the tested ranges compared to existing empirical equations.


Author(s):  
Leopoldo Franco ◽  
Giorgio Bellotti ◽  
Claudia Cecioni

This paper describes new physical model tests aiming at measuring both wave overtopping and wave induced forces on rubble mound breakwater crown walls. The physical model and the equipment used for the measurements are described in detail. For the completed tests, a detailed analysis is reported, by evaluating the properties of the incoming waves at the toe of the breakwater and some statistical parameters to describe the wave induced forces and pressures on the crown wall. Careful analysis is also carried out to evaluate how the distribution of the pressures changes with time. It is found that the upper part of the wall is subjected to the first large quasi-impulsive action of the wave; the lower part of the wall is afterwards flooded and a quasi-hydrostatic pressure develops along the height of the wave wall. As far as the pressures on the base of the crown wall are concerned, they develop after a quite large time lag after the maximum of the horizontal force. First attempts to correlate the maximum horizontal force with some explanatory variables such as the ratio of the crest freeboard and of the significant wave height of the incoming waves indicate a promising correlation, also in agreement with the existing literature on the topic. The overtopping rate are also measured and compared with empirical formulas. The correlation between the wave induced forces and the average overtopping discharge on the breakwater is also investigated.


Author(s):  
Luca Martinelli ◽  
Chiara Favaretto ◽  
Matteo Volpato ◽  
Piero Ruol

According to the management of the Mo.S.E. system, the water level in the Venetian lagoon is maintained below a certain threshold, that however does not guarantee the complete defense of the main Piazza. Flooding of the Piazza is presently tolerated, although limitedly to a minor extent, and can/will be avoided only thanks to additional adaptation works. One of the possible flooding mechanisms is the wave overtopping, and this note investigates the efficiency, as possible mitigation option, of a small temporary barrier placed along the S. Marco quay.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/wiSF2B81wIM


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 458
Author(s):  
Drew C. Baird ◽  
Benjamin Abban ◽  
S. Michael Scurlock ◽  
Steven B. Abt ◽  
Christopher I. Thornton

While there are a wide range of design recommendations for using rock vanes and bendway weirs as streambank protection measures, no comprehensive, standard approach is currently available for design engineers to evaluate their hydraulic performance before construction. This study investigates using 2D numerical modeling as an option for predicting the hydraulic performance of rock vane and bendway weir structure designs for streambank protection. We used the Sedimentation and River Hydraulics (SRH)-2D depth-averaged numerical model to simulate flows around rock vane and bendway weir installations that were previously examined as part of a physical model study and that had water surface elevation and velocity observations. Overall, SRH-2D predicted the same general flow patterns as the physical model, but over- and underpredicted the flow velocity in some areas. These over- and underpredictions could be primarily attributed to the assumption of negligible vertical velocities. Nonetheless, the point differences between the predicted and observed velocities generally ranged from 15 to 25%, with some exceptions. The results showed that 2D numerical models could provide adequate insight into the hydraulic performance of rock vanes and bendway weirs. Accordingly, design guidance and implications of the study results are presented for design engineers.


2021 ◽  
Author(s):  
Maha Mdini ◽  
Takemasa Miyoshi ◽  
Shigenori Otsuka

<p>In the era of modern science, scientists have developed numerical models to predict and understand the weather and ocean phenomena based on fluid dynamics. While these models have shown high accuracy at kilometer scales, they are operated with massive computer resources because of their computational complexity.  In recent years, new approaches to solve these models based on machine learning have been put forward. The results suggested that it be possible to reduce the computational complexity by Neural Networks (NNs) instead of classical numerical simulations. In this project, we aim to shed light upon different ways to accelerating physical models using NNs. We test two approaches: Data-Driven Statistical Model (DDSM) and Hybrid Physical-Statistical Model (HPSM) and compare their performance to the classical Process-Driven Physical Model (PDPM). DDSM emulates the physical model by a NN. The HPSM, also known as super-resolution, uses a low-resolution version of the physical model and maps its outputs to the original high-resolution domain via a NN. To evaluate these two methods, we measured their accuracy and their computation time. Our results of idealized experiments with a quasi-geostrophic model [SO3] show that HPSM reduces the computation time by a factor of 3 and it is capable to predict the output of the physical model at high accuracy up to 9.25 days. The DDSM, however, reduces the computation time by a factor of 4 and can predict the physical model output with an acceptable accuracy only within 2 days. These first results are promising and imply the possibility of bringing complex physical models into real time systems with lower-cost computer resources in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document