scholarly journals Collapse Analysis of ERW Pipe Based on Roll-Forming and Sizing Simulations

2019 ◽  
Vol 7 (11) ◽  
pp. 410 ◽  
Author(s):  
Seong-Wook Han ◽  
Yeun Chul Park ◽  
Soo-Chang Kang ◽  
Sungmoon Jung ◽  
Ho-Kyung Kim

The demand for electric resistance welded (ERW) pipe for deep-water installation has increased, which necessitates a higher degree of accuracy in evaluating the strength of pipe in order to satisfy the design limit state, otherwise referred to as the collapse performance. Since ovality and residual stress governs the collapse performance, an accurate evaluation of these factors is needed. An analytical approach using a three-dimensional finite element method was proposed to simulate the roll-forming and sizing processes in manufacturing ERW pipe. To simulate significant plastic deformation during manufacturing, a nonlinear material model that included the Bauschinger effect was incorporated. The manufacturing of ERW pipe made of API 5L X70 steel was simulated and analyzed for collapse performance. Controlling the ovality of the pipe significantly decreased the amount of pressure that would cause a collapse, whereas the effect of residual stress was minor. These two factors could be improved via the use of a proper sizing ratio.

2014 ◽  
Vol 622-623 ◽  
pp. 1132-1138 ◽  
Author(s):  
Siti Nadiah binti Mohd Saffe ◽  
Nagamachi Takuo ◽  
Ona Hiroshi

A hat channel, also called a furring channel, is a channel with a bottom horizontal web and two vertical flanges, as well as an outward lip that is fabricated by roll forming. When the channel is cut off at a specified length, the edge of the product will change due to the release of residual stress, and this change is generally called cut end deformation. The cut end deformation of channel steel was investigated via experiment and three-dimensional finite-element simulation. The effect of initial thickness on the cut end deformation of hat channel steel was studied. For hat channel steel, the deformations at the front end and back end increase when the sheet metal thickness increases. However, the influence of initial thickness on the cut end deformation of hat-shape channel steel is small.


2004 ◽  
Vol 32 (2) ◽  
pp. 257-263 ◽  
Author(s):  
M. L. Raghavan ◽  
S. Trivedi ◽  
A. Nagaraj ◽  
D. D. McPherson ◽  
K. B. Chandran

Author(s):  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Residual stress distribution in an oblique nozzle jointed to a vessel with J-groove welds was analyzed using a three-dimensional finite element method. All welding passes were considered in a 180-degree finite element (FE) model with symmetry. Temperature and stress were modeled for simultaneous bead laying. To determine residual stress distributions at the welds experimentally, a mock-up specimen was manufactured. The analytical results show good agreement with the experimental measurement data, indicating that FE modeling is valid.


1986 ◽  
Vol 108 (2) ◽  
pp. 99-106 ◽  
Author(s):  
E. F. Rybicki ◽  
J. R. Shadley

The accuracy of a destructive, experimental method for the evaluation of through-thickness residual stress distributions is investigated. The application of the method is to a welded pipe that has been subjected to a residual stress improvement process. The residual stress improvement process introduces gradients in the stress distribution. The question of interest is how well the back-computation method used to interpret the experimental data represents the residual stress distribution for this type of stress profile. To address this question, a finite element model was used to provide a reference stress solution for comparison with the back-computation results of the experimental method. Three-dimensional finite element stress analyses were also conducted to simulate the cutting steps of the destructive laboratory procedure. The residual stress distributions obtained by the back-computation procedure were then compared with the reference stress solutions provided by the finite element model. The comparisons show agreement and indicate that good results can be expected from the experimental method when it is applied to a pipe that has been subjected to a residual stress improvement process, provided that the axial gradient of stress is not too large.


Author(s):  
S. Ismonov ◽  
S. R. Daniewicz ◽  
J. C. Newman ◽  
M. R. Hill ◽  
M. R. Urban

A cold expansion process is used to prolong the fatigue life of a structure under cyclic loadings. The process produces a beneficial compressive residual stress zone in the hole vicinity, which retards the initiation and propagation of the crack at the hole edge. In this study, a three-dimensional finite element model of the split-sleeve cold expansion process was developed to predict the resulting residual stress field. A thin rectangular aluminum sheet with a centrally located hole was considered. A rigid mandrel and an elastic steel split sleeve were explicitly modeled with the appropriate contact elements at the interfaces between the mandrel, the sleeve, and the hole. Geometrical and material nonlinearities were included. The simulation results were compared with experimental measurements of the residual stress. The influence of friction and the prescribed boundary conditions for the sheet were studied. Differences between the split-sleeve- and the non-split-sleeve model solutions are discussed.


2015 ◽  
Vol 667 ◽  
pp. 22-28 ◽  
Author(s):  
Jing Li ◽  
Zhan Li Wang ◽  
Ping Xi ◽  
Yang Jiao

Aiming at the problem that the machining accuracy of 45 steel rectangular thin-walled parts are difficult to ensure because of poor rigidity, poor manufacturability and easy machining deformation, it used the three-dimensional finite element method, determined the material model of 45 steel and established a prediction model of 45 steel rectangular thin-walled parts milling deformation. The prediction results display that the deformation of the workpiece shows obvious parabola in length direction and a linear decreasing trend in width direction. It verifies the correctness of the prediction model through milling experiments and provides the method and basis for the prediction and control of machining deformation of 45 steel thin-walled parts.


2013 ◽  
Vol 762 ◽  
pp. 763-768
Author(s):  
Zhi Qing Hu ◽  
Ji Zhao ◽  
Zeng Ming Feng

Micro-structured surfaces with drag reduction, desorption, and excellent optical performance are widely used in the field of automotive, aerospace, marine applications. Therefore, the manufacturing of the micro-structure on the metal surface is of high impotance. Although the processing methods for micro-patterning of surfaces have progressed in recent years, micro-structure processing is still not used on large metal surfaces. In this paper, a method of roll forming micro-structure on the plate surface is proposed. A simulation model for micro-structure roll forming (MRF) was presented by using three-dimensional finite element method (FEM). The strain and stress, and the displacements caused by micro-structure were analyzed. The results provide theoretical guidance for the design of different micro-structures and the sequence of their processing.


Sign in / Sign up

Export Citation Format

Share Document