scholarly journals Prediction of Unsteady Developed Tip Vortex Cavitation and Its Effect on the Induced Hull Pressures

2020 ◽  
Vol 8 (2) ◽  
pp. 114 ◽  
Author(s):  
Seungnam Kim ◽  
Spyros A. Kinnas

Reducing the on-board noise and fluctuating pressures on the ship hull has been challenging and represent added value research tasks in the maritime industry. Among the possible sources for the unpalatable vibrations on the hull, propeller-induced pressures have been one of the main causes due to the inherent rotational motion of propeller and its proximity to the hull. In previous work, a boundary element method, which solves for the diffraction potentials on the ship hull due to the propeller, has been used to determine the propeller induced hull pressures. The flow around the propeller was evaluated via a panel method which solves in time for the propeller loading, trailing wake, and the sheet cavities. In this article, the propeller panel method is extended so that it also solves for the shape of developed tip vortex cavities, the effects of which are also included in the evaluation of the hull pressures. The employed unsteady wake alignment scheme is first applied, in the absence of cavitation, to investigate the propeller performance in non-axisymmetric inflow, such as the inclined-shaft flow or the flow behind an upstream body. In the latter case, the propeller panel method is coupled with a Reynolds-Averaged Navier–Stokes (RANS) solver to determine the effective wake at the propeller plane. The results, including the propeller induced hull pressures, are compared with those measured in the experiments as well as with those from RANS, where the propeller is also simulated as a solid boundary. Then the methods are applied in the cases where partial cavities and developed tip vortex cavities coexist. The predicted cavity patterns, the developed tip vortex trajectories, and the propeller-induced hull pressures are compared with those measured in the experiments.

Author(s):  
Seungnam Kim ◽  
Spyros A. Kinnas

Abstract In this paper, a boundary element method (BEM) is applied to a tip loaded propeller (TLP) to predict its open water characteristics and induced hull pressures under fully-wetted and uniform inflow. Tip of a TLP blade has a winglet-like tip plate on the pressure side to improve the overall propeller efficiency over the traditional open tip propellers by preventing circulation loss toward the tip region. TLPs are also used to reduce the tip vortex strength and thus free from the trade off the propeller efficiency against the cavitation performance; therefore, predicting their performance early in the designing stage via numerical applications can provide the initial knowledge on the loading distributions and cavitation performance. In the present method, the trailing wake is first aligned using the full wake alignment (FWA) scheme by aligning the wake surface to the local stream in order to satisfy the force free condition. The FWA is shown to improve the open water characteristics of the TLPs compared to the simplified alignment scheme that ignores the details of the flow behind the trailing edge due to the simplicity of the method. Afterwards, a pressure-BEM solver is used to solve for the diffraction potentials on the hull and estimate the propeller-induced hull pressures. In this case, both the FWA and the unsteady wake alignment scheme (UWA), which considers the time dependency of the problem, produce the same results as the testing flow is assumed to be uniform. This paper briefly introduces the model TLP, proper ways to consider the viscous effect on the blade surface, wake alignment scheme, and the pressure-BEM solver. Then, the predicted open water characteristics of the benchmark TLP and its induced hull pressures are compared to the experimental data, as well as the results from unsteady full-blown Reynolds-Averaged Navier-Stokes simulations for validations of the numerical predictions.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ye Tian ◽  
Spyros A. Kinnas

A low order panel method is used to predict the performance of propellers. A wake alignment model based on a pseudounsteady scheme is proposed and implemented. The results from this full wake alignment (FWA) model are correlated with available experimental data, and results from RANS for some propellers at design and low advance ratios. Significant improvements have been found in the predicted integrated forces and pressure distributions.


1999 ◽  
Vol 121 (3) ◽  
pp. 638-645 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
Laura L. Pauley

The uniform flow past a rotating marine propeller was studied using incompressible Reynolds-averaged Navier-Stokes computations with the Baldwin-Barth turbulence model. Extensive comparison with the experimental data was made to validate the numerical results. The general characteristics of the propeller flow were well predicted. The current numerical method, however, produced an overly diffusive and dissipative tip vortex core. Modification of the Baldwin-Barth model to better predict the Reynolds stress measurements also improved the prediction of the mean velocity field. A modified tip geometry was also tested to show that an appropriate cross section design can delay cavitation inception in the tip vortex without reducing the propeller performance.


2015 ◽  
Vol 59 (03) ◽  
pp. 246-257 ◽  
Author(s):  
Spyros A. Kinnas ◽  
Hongyang Fan ◽  
Ye Tian

An improved perturbation potential-based panel method is applied to model the flow around ducted propellers. One significant development in this method is the application of full wake alignment scheme in which the trailing vortex wake sheets of the blades are aligned with the local flow velocity by also considering the effects of duct and duct wake. A process of repaneling the duct is simultaneously introduced to improve the accuracy of the method. The results from the improved wake model are compared with those from a simplified wake alignment scheme. At the same time, full-blown Reynolds-averaged Navier-Stokes (RANS) simulations are conducted via commercial solvers. The forces, i.e., thrust and torque, on the propeller predicted by this panel method under the improved wake alignment model show good agreement both with experimental measurements, a hybrid method developed by the Ocean Engineering Group of University of Texas at Austin, and the full-blown RANS simulations. Moreover, predicted pressure distribution on the blades and duct are compared among the various methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
J. Baltazar ◽  
J. A. C. Falcão de Campos ◽  
J. Bosschers

This paper discusses several modelling aspects that are important for the performance predictions of a ducted propulsor with a low-order Panel Method. The aspects discussed are the alignment of the wake geometry, the influence of the duct boundary layer on the wake pitch, and the influence of a transpiration velocity through the gap. The analysis is carried out for propeller Ka4-70 operating without and inside a modified duct 19A, in which the rounded trailing edge is replaced by a sharp trailing edge. Experimental data for the thrust and torque are used to validate the numerical results. The pitch of the tip vortex is found to have a strong influence on the propeller and duct loads. A good agreement with the measurements is achieved when the wake alignment is corrected for the presence of the duct boundary layer.


2005 ◽  
Vol 49 (03) ◽  
pp. 176-190
Author(s):  
Hanseong Lee ◽  
Spyros A. Kinnas

A low-order boundary element method is applied to predict the trailing wake geometries shedding from hydrofoil and marine propellers in steady and unsteady flows, as well as the vortex motions of the classical lifting line problem with elliptic loading distribution. In order to prevent the numerical instability near the vortex roll-up region, a tip vortex with finite core size is introduced at the end of the vortex line (or at the tip of the wake sheet in the case of a three-dimensional problem), and the induced velocities are evaluated at the displaced control points instead of the actual control points on the vortex (or wake) panels. Green's integral equation with boundary conditions is formulated based on the perturbation potential and solved for the potentials on the lifting bodies and the tip vortex surface. The three-component velocities on the tip vortex surface are computed by numerically differentiating the solution potentials, and the induced velocities on the wake surface are directly determined from the integral equation derived from analytical differentiation of Green's integral equation. The new geometries of the vortex line or the trailing wake as well as the location of the tip vortex core center are then determined by aligning them to the flow so that the force-free condition is satisfied on the wake. The method is applied for the two-dimensional and three-dimensional problems, and validated with experiments and other numerical methods in terms of tip vortex trajectory and blade forces.


2019 ◽  
Vol 63 (4) ◽  
pp. 219-234
Author(s):  
João Baltazar ◽  
José A. C. Falcão de Campos ◽  
Johan Bosschers ◽  
Douwe Rijpkema

This article presents an overview of the recent developments at Instituto Superior Técnico and Maritime Research Institute Netherlands in applying computational methods for the hydrodynamic analysis of ducted propellers. The developments focus on the propeller performance prediction in open water conditions using boundary element methods and Reynolds-averaged Navier-Stokes solvers. The article starts with an estimation of the numerical errors involved in both methods. Then, the different viscous mechanisms involved in the ducted propeller flow are discussed and numerical procedures for the potential flow solution proposed. Finally, the numerical predictions are compared with experimental measurements.


1999 ◽  
Vol 121 (1) ◽  
pp. 198-204 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
Laura L. Pauley

The Rayleigh-Plesset bubble dynamics equation coupled with the bubble motion equation developed by Johnson and Hsieh was applied to study the real flow effects on the prediction of cavitation inception in tip vortex flows. A three-dimensional steady-state tip vortex flow obtained from a Reynolds-Averaged Navier-Stokes computation was used as a prescribed flow field through which the bubble was passively convected. A “window of opportunity” through which a candidate bubble must pass in order to be drawn into the tip-vortex core and cavitate was determined for different initial bubble sizes. It was found that bubbles with larger initial size can be entrained into the tip-vortex core from a larger window size and also had a higher cavitation inception number.


2004 ◽  
Vol 48 (01) ◽  
pp. 15-30
Author(s):  
Hanseong Lee ◽  
Spyros A. Kinnas

Most marine propellers operate in nonaxisymmetric inflows, and thus their blades are often subject to an unsteady flow field. In recent years, due to increasing demands for faster and larger displacement ships, the presence of blade sheet and tip vortex cavitation has become very common. Developed tip vortex cavitation, which often appears together with blade sheet cavitation, is known to be one of the main sources of propeller-induced pressure fluctuations on the ship hull. The prediction of developed tip vortex cavity as well as blade sheet cavity is thus quite important in the assessment of the propeller performance and the corresponding pressure fluctuations on the ship hull. A boundary element method is employed to model the fully unsteady blade sheet (partial or supercavitating) and developed tip vortex cavitation on propeller blades. The extent and size of the cavity is determined by satisfying both the dynamic and the kinematic boundary conditions on the cavity surface. The numerical behavior of the method is investigated for a two-dimensional tip vortex cavity, a three-dimensional hydrofoil, and a marine propeller subjected to nonaxisymmetric inflow. Comparisons of numerical predictions with experimental measurements are presented.


Sign in / Sign up

Export Citation Format

Share Document