scholarly journals Mechanical Analysis of a Scraping Method to Remove Attached Barnacles

2020 ◽  
Vol 8 (3) ◽  
pp. 150
Author(s):  
Chao Li ◽  
Gang Wang ◽  
Kaiyun Chen ◽  
Feihong Yun ◽  
Liquan Wang

In order to clean the marine fouling attached to marine steel piles, a scraping method is proposed in this paper. Barnacles were used to represent a typical object needing removal, in order to estimate the maximum force required in the equipment designed for use in this method. On the basis of the orthogonal cutting theory and the peel zone method, a scraping method and its cutting force model are proposed in this paper for the surface cleaning of marine steel piles. The finite element method was used to verify the analytical model errors. The comparison showed that the relative errors of the cutting force are less than 10%. Our model can be used for cutting force estimation in cleaning equipment design. Our analysis shows that the blade rake angle has a large effect on the cutting force and that the optimum blade rake angle design is a compromise between blade strength and cutting force. We conclude that increasing the blade rake angle can reduce the cutting force in this scraping process; a medium blade rake angle [30°, 60°] is recommended, considering both cutting force and blade strength.

2020 ◽  
Vol 8 (8) ◽  
pp. 569
Author(s):  
Chao Li ◽  
Gang Wang ◽  
Kaiyun Chen ◽  
Peng Jia ◽  
Liquan Wang ◽  
...  

In this paper, a cleaning robot is designed to remove the marine fouling attached to a marine steel pile. In the following study, in order to analyse the process of cleaning marine fouling attached to a rough substrate, the barnacle is taken as a typical case in order to study the horizontal cutting force in the scarping process for removing barnacles on a rough substrate. The adhesion model of the barnacle was established on a rough rigid substrate. Considering both right angle cutting theory and the Peel Zone method, a scraping means and horizontal cutting force model for rough surface cleaning are proposed for the study of the surface cleaning of steel piles. In order to make the model more accurate, the finite element method is used to analyze and compare its errors. Through comparative analysis, it is known that the relative average errors about the cutting force in the horizontal direction are less than 15%. The analysis shows that the blade rake angle and rough substrate have a great influence on the horizontal cutting force. It can be concluded that the cutting force needed to clean the barnacle attached to the surface decreases correspondingly as the rake angle of the blade increases; and the rougher the substrate is, the greater the horizontal cutting force required. It is recommended to use 60° for blade rake angle. We can use the model to predict the horizontal cutting force and blade rake angle in the design of a cleaning robot.


2020 ◽  
Vol 111 (1-2) ◽  
pp. 213-226
Author(s):  
Gergő Fodor ◽  
Henrik T Sykora ◽  
Dániel Bachrathy

Abstract The main goal of this study is to introduce a stochastic extension of the already existing cutting force models. It is shown through orthogonal cutting force measurements how stochastic processes based on Gaussian white noise can be used to describe the cutting force in material removal processes. Based on these measurements, stochastic processes were fitted on the variation of the cutting force signals for different cutting parameters, such as cutting velocity, chip thickness, and rake angle. It is also shown that the variance of the measured force signal is usually around 4–9% of the average value, which is orders of magnitudes larger than the noise originating from the measurement system. Furthermore, the force signals have Gaussian distribution; therefore, the cutting force model can be extended by means of a multiplicative noise component.


Author(s):  
Ashwani Pratap ◽  
Karali Patra

Abstract This work presents an analytical cutting force modeling for micro-slot grinding. Contribution of the work lies in the consideration of both primary and secondary tool surface interactions with the work surface as compared to the previous works where only primary tool surface interaction was considered during cutting force modeling. Tool secondary surface interaction with workpiece is divided into two parts: cutting/ ploughing by abrasive grits present in exterior margin of the secondary tool surface and sliding/adhesion by abrasive grits in the inner margins of the secondary tool surface. Orthogonal cutting force model and indentation based fracture model is considered for cutting by both the abrasives of primary tool surface and the abrasives of exterior margin on the secondary surface. Asperity level sliding and adhesion model is adopted to solve the interaction between the workpiece and the interior margin abrasives of secondary tool surface. Experimental measurement of polycrystalline diamond tool surface topography is carried out and surface data is processed with image processing tools to determine the tool surface statistics viz., cutting edge density, grit height distribution and abrasive grit geometrical measures. Micro-slot grinding experiments are carried out on BK7 glass at varying feed rate and axial depths of cut to validate the simulated cutting forces. Simulated cutting forces considering both primary and secondary tool surface interactions are found to be much closer to the experimental cutting forces as compared to the simulated cutting forces considering only primary tool surface interaction.


Author(s):  
Felicia Stan ◽  
Daniel Vlad ◽  
Catalin Fetecau

This paper presents an experimental investigation of the cutting forces response during the orthogonal cutting of polytetrafluoroethylene (PTFE) and PTFE-based composites using the Taguchi method. Cutting experiments were conducted using the L27 orthogonal array and the effects of the cutting parameters (feed rate, cutting speed and rake angle) on the cutting force were analyzed using the S/N ratio response and the analysis of variance (ANOVA). Statistical models that correlate the cutting force with process variables were developed using ANOVA and polynomial regression. The variation of the apparent friction coefficient was analyzed with respect to tool geometry and the cutting process. The results indicated that cutting and thrust forces increase with increasing feed rate, and decrease with increasing rake angles from negative to positive values and increasing cutting speed. A power law relationship between the apparent friction coefficient and the normal force exerted by the chip on the tool-rake face was identified, the former decreasing with an increasing normal force.


1998 ◽  
Vol 120 (1) ◽  
pp. 49-56 ◽  
Author(s):  
B. K. Ganapathy ◽  
I. S. Jawahir

The present tendency towards increased automation of metal cutting operations has resulted in a need to develop a model for the chip breaking process. Conventional cutting force models do not have any provision for the study of chip breaking since they assume a continuous mode of chip formation, where the contact action of the free-end of the chip is ignored in all analyses. The new cutting force model proposed in this work incorporates the contact force developed due to the free-end of the chip touching the workpiece, and is applicable to the study of two-dimensional chip breaking in orthogonal machining. Orthogonal cutting tests were performed to obtain two-dimensional chip breaking. The experimentally measured cutting forces show a good correlation with the estimated cutting forces using the model. Results show that the forces acting on the chip vary within a chip breaking cycle and help identify the chip breaking event.


2012 ◽  
Vol 268-270 ◽  
pp. 422-425
Author(s):  
Mu Lan Wang ◽  
Jun Ming Hou ◽  
Bao Sheng Wang ◽  
Wen Zheng Ding

The application of Finite Element Method (FEM) in cutting force model for Aluminium alloy work-piece is useful to reduce the production costs and shorten the experimental period. Firstly, the theoretical model of the orthogonal cutting and the oblique cutting are analyzed in this paper. And then, the corresponding finite element models are theoretically constructed. By comparing the results, the following conclusions are drawn: with the increase of the cutting thickness, the cutting force increasing is in an enhancement tendency. The oblique cutting model of overall tool is more conductive to the subsequent runout and the flutter analysis.


2010 ◽  
Vol 97-101 ◽  
pp. 1961-1964 ◽  
Author(s):  
Wei Guo Wu ◽  
Gui Cheng Wang ◽  
Chun Gen Shen

In this work, the prediction and analysis of cutting forces in precision turning operations is presented. The model of cutting forces is based on the oblique cutting force model which was rebuilt by two coordinate conversions from the orthogonal cutting model. Then the cutting field in precision turning was divided into two fields which are characterized as curve change and linear change on cutter edge and they were modeled respectively. Cutting field of cutter nose was modeled by differential method and its cutting force distribution is predicted by the proposed method. The predicted results for the cutting forces are in agreement with the experimental results under a variety of operation variables, including changes in the depths of cut and in the feedrate.


Author(s):  
M. Salehi ◽  
T. L. Schmitz ◽  
R. Copenhaver ◽  
R. Haas ◽  
J. Ovtcharova

Probabilistic sequential prediction of cutting forces is performed applying Bayesian inference to Kienzle force model. The model uncertainties are quantified using the Metropolis algorithm of the Markov chain Monte Carlo (MCMC) approach. Prior probabilities are established and posteriors of the models parameters and force predictions are completed using the results of orthogonal turning experiments. Two types of tools with chamfer (rake) angles of 0 deg and −10 deg are tested under various cutting speed and feed per revolution values. First, Bayesian inference is applied to two force models, Merchant and Kienzle, to investigate the cutting force prediction at the low feed values for the 0 deg rake angle tool. Second, the results of the posteriors of the Kienzle model parameters are used as prior probabilities of the −10 deg rake angle tool. The simulation results of the 0 deg and −10 deg tool rake angle are compared with the experiments which are obtained under other cutting conditions for model verification. Maximum prediction errors of 7% and 9% are reported for the tangential and feed forces, respectively. This indicates a good capability of the Bayesian inference for model parameter identification and cutting force prediction considering the inherent uncertainty and minimum input experimental data.


2011 ◽  
Vol 121-126 ◽  
pp. 283-287
Author(s):  
Li Ying Gao ◽  
Qin He Zhang ◽  
Ming Liu

An orthogonal cutting model for investigating indentation type cutting of soft tissue was established, and the cutting force model was constructed theoretically based on fracture mechanics. A planar biological soft tissue cutting experimental setup was designed and developed to realize soft tissue cutting. Cutting experiments using orthogonal cutting blades were performed on fresh porcine liver at different cutting speeds. It was experimentally shown that the cutting speeds and the blade rake angles have significant effects on the penetration force and cutting force. Finally, a regression equation was obtained to explain the relationship among cutting force, cutting speed, and rake angle. These findings provide new insight into the biological soft tissue cutting.


Sign in / Sign up

Export Citation Format

Share Document