scholarly journals Predicting Morphodynamics for Beach Intertidal Systems in the North Sea: A Space-Time Stochastic Approach

2020 ◽  
Vol 8 (11) ◽  
pp. 901 ◽  
Author(s):  
Patrick Bogaert ◽  
Anne-Lise Montreuil ◽  
Margaret Chen

The ability to accurately predict beach morphodynamics is of primary interest for coastal scientists and managers. With this goal in mind, a stochastic model of a sandy macrotidal barred beach is developed that is based on cross-shore elevation profiles. Intertidal elevation was monitored from monthly to annually for 19 years through Real Time Kinematics-GPS (RTK-GPS) and LiDAR surveys, and monthly during two years with an RTK-GPS. In addition, during two campaigns of about two weeks, intensive surveys on a daily basis were performed with an RTK-GPS on a different set of profiles. Based on the measurements, space and time variograms are constructed in order to assess the spatial and temporal dependencies of these elevations. A separable space-time covariance model is then built from them in order to generate a large number of plausible future profiles at arbitrary time instants t+τ, starting from observed profiles at time instants t. For each simulation, the total displaced sand volume is computed and a distribution is obtained. The mean of this distribution is in good agreement with the total displaced sand volume measured on the profiles, provided that they are lower than 45 m3/m. The time variogram also shows that 90% of maximum variability is reached for a time interval τ of three years. These results demonstrate how the temporal evolution of an integrated property, like the total displaced sand volume, can be estimated over time. This suggests that a similar stochastic approach could be useful for estimating other properties as long as one is able to capture the stochastic space-time variability of the underlying processes.

2018 ◽  
Vol 10 (3) ◽  
pp. 1729-1734 ◽  
Author(s):  
Wilhelm Petersen ◽  
Susanne Reinke ◽  
Gisbert Breitbach ◽  
Michail Petschatnikov ◽  
Henning Wehde ◽  
...  

Abstract. From 2002 to 2005 a FerryBox system was installed aboard two different ferries travelling between Cuxhaven (Germany) and Harwich (UK) on a daily basis. The FerryBox system is an automated flow-through monitoring system for measuring oceanographic and biogeochemical parameters installed on ships of opportunity. The variables were recorded in a time interval of 10–20 s, corresponding to a spatial resolution of about 100 m. The data set provides the parameters water temperature, salinity, dissolved oxygen and chlorophyll a fluorescence. There is a longer data gap between November 2002 and August 2003 in the time series due to a change of the vessel in October 2002. The data are available at https://doi.org/10.1594/PANGAEA.883824 (Petersen et al., 2017) and as part of the COSYNA (Coastal Observing System for Northern and Arctic Seas) data portal CODM at http://codm.hzg.de/codm (last access: September 2018) or https://doi.org/10.17616/R3K02T (Breitbach, 2018).


2018 ◽  
Author(s):  
Wilhelm Petersen ◽  
Susanne Reinke ◽  
Gisbert Breitbach ◽  
Michail Petschatnikov ◽  
Henning Wehde ◽  
...  

Abstract. From 2002 to 2005 a FerryBox system was installed aboard two different ferries travelling between Cuxhaven (GE) and Harwich (UK) on a daily basis. The FerryBox system is an automated flow-through monitoring system for measuring oceanographic and biogeochemical parameters installed on ships of opportunity. The variables were recorded in a time interval of 10–20 seconds corresponding to a spatial resolution of about 100 m. The dataset provides the parameters water temperature, salinity, dissolved oxygen and chlorophyll-a fluorescence. There is a longer data gap between November 2002 and August 2003 in the time series due to a change of the vessel in October 2002. The data are available at doi:10.1594/PANGAEA.883824 and as part of the COSYNA data portal CODM at http://codm.hzg.de/codm or doi:10.17616/R3K02T.


2020 ◽  
Vol 77 (5) ◽  
pp. 1772-1786 ◽  
Author(s):  
A D Rijnsdorp ◽  
J G Hiddink ◽  
P D van Denderen ◽  
N T Hintzen ◽  
O R Eigaard ◽  
...  

Abstract Fisheries using bottom trawls are the most widespread source of anthropogenic physical disturbance to seafloor habitats. To mitigate such disturbances, the development of fisheries-, conservation-, and ecosystem-based management strategies requires the assessment of the impact of bottom trawling on the state of benthic biota. We explore a quantitative and mechanistic framework to assess trawling impact. Pressure and impact indicators that provide a continuous pressure–response curve are estimated at a spatial resolution of 1 × 1 min latitude and longitude (∼2 km2) using three methods: L1 estimates the proportion of the community with a life span exceeding the time interval between trawling events; L2 estimates the decrease in median longevity in response to trawling; and population dynamic (PD) estimates the decrease in biomass in response to trawling and the recovery time. Although impact scores are correlated, PD has the best performance over a broad range of trawling intensities. Using the framework in a trawling impact assessment of ten métiers in the North Sea shows that muddy habitats are impacted the most and coarse habitats are impacted the least. Otter trawling for crustaceans has the highest impact, followed by otter trawling for demersal fish and beam trawling for flatfish and flyshooting. Beam trawling for brown shrimps, otter trawling for industrial fish, and dredging for molluscs have the lowest impact. Trawling is highly aggregated in core fishing grounds where the status of the seafloor is low but the catch per unit of effort (CPUE) per unit of impact is high, in contrast to peripheral grounds, where CPUE per unit of impact is low.


Baltica ◽  
2018 ◽  
Vol 31 (1) ◽  
pp. 24-34
Author(s):  
Simon Troelstra ◽  
Cees Laban ◽  
Maarten Prins ◽  
Kay Beets ◽  
Maarten van Diepen ◽  
...  

Detailed analysis of a core taken within the framework of the Marker Wadden project reveals the sedimentary history of the central part of the Netherlands following the Holocene sea level rise. Grain size and thermogravimetric analyses coupled with micropalaeontological and stable oxygen isotope data provide a solid framework for a detailed reconstruction of the landscape during this time interval. The Pleistocene landscape of fluviatile and aeolian deposits was succeeded by periods of marsh growth, brackish semi-enclosed lakes and tidal flats until a permanent connection with the North Sea was established. Palynological data suggest human activities in the immediate surroundings of the research area.


2010 ◽  
Vol 147 (5) ◽  
pp. 760-776 ◽  
Author(s):  
STEPHEN LOUWYE ◽  
STIJN DE SCHEPPER

AbstractA palynological analysis with marine palynomorphs (dinoflagellate cysts, acritarchs, green algae) and terrestrial palynomorphs (pollen and spores) of the Kasterlee and Poederlee formations provides new insights in the depositional history at the southern border of the North Sea basin (northern Belgium) around the Miocene–Pliocene transition. Dinoflagellate cyst stratigraphy constrains the age of the Kasterlee Formation in the Oud-Turnhout borehole between 7.5 and 5.32 Ma. The upper boundary of the formation can be correlated with sequence boundary Me2 at 5.73 Ma of Hardenbol and co-workers, which further constrains its age to the time interval 7.5–5.73 Ma. The palynomorph assemblages reflect a near-coast depositional environment. Where present, the Kasterlee Formation thus terminates the Miocene series in northern Belgium. The overall shallow nature of the latest Miocene deposits is related to a sea-level lowering caused by the onset of globally cooling conditions. For the first time, palynology is applied to estimate the age of the Poederlee Formation, suggesting it was deposited during the Mid-Pliocene warm period. Dinoflagellate cysts and sequence stratigraphy together constrain the age of the unit between 3.21 and 2.76 Ma, and possibly even between 3.21 and 3.15 Ma. The Poederlee Formation was deposited in neritic environments, which shoaled in the upper part of the unit as a consequence of the decreasing availability of accommodation space. We demonstrate that the magnitude of the hiatus between the Miocene and Pliocene series varies strongly at the southern boundary of the North Sea Basin, and lasts in the Antwerp area c. 3.2 million years and c. 2.52 million years in the Campine area.


Sign in / Sign up

Export Citation Format

Share Document