scholarly journals Can Proteomics Be Considered as a Valuable Tool to Assess the Toxicity of Nanoparticles in Marine Bivalves?

2020 ◽  
Vol 8 (12) ◽  
pp. 1033
Author(s):  
Beatrice De Felice ◽  
Marco Parolini

Exposure to nanoparticles (NPs) has been identified as a major concern for marine ecosystems. Because of their peculiar physico-chemical features, NPs are accumulated in marine organisms, which suffer a variety of adverse effects. In particular, bivalve mollusks represent a unique target for NPs, mainly because they are suspension-feeders with highly developed processes for cellular internalization of nano- and micrometric particles. Several studies have demonstrated that the uptake and the accumulation of NPs can induce sub-lethal effects towards marine bivalves. However, to understand the real risk of NP exposures the application of the so-called “omics” techniques (e.g., proteomics, genomics, metabolomics, lipidomics) has been suggested. In particular, proteomics has been used to study the effects of NPs and their mechanism(s) of action in marine bivalves, but to date its application is still limited. The present review aims at summarizing the state of the art concerning the application of proteomics as a tool to investigate the effects of nanoparticles on the proteome of marine bivalves, and to critically discuss the advantages and limitations of proteomics in this field of research. Relying on results obtained by studies that applied proteomics on bivalve tissues, proteomics application needs to be considered cautiously as a promising and valuable tool to shed light on toxicity and mechanism(s) of action of NPs. Although on one hand, the analysis of the current literature demonstrated undeniable strengths, potentiality and reliability of proteomics, on the other hand a number of limitations suggest that some gaps of knowledge need to be bridged, and methodological and technical improvements are necessary before proteomics can be readily and routinely applied to nanotoxicology studies.

2017 ◽  
Vol 11 (4) ◽  
pp. 498-517
Author(s):  
Yuk Hui ◽  
Louis Morelle

This article aims to clarify the question of speed and intensity in the thoughts of Simondon and Deleuze, in order to shed light on the recent debates regarding accelerationism and its politics. Instead of starting with speed, we propose to look into the notion of intensity and how it serves as a new ontological ground in Simondon's and Deleuze's philosophy and politics. Simondon mobilises the concept of intensity to criticise hylomorphism and substantialism; Deleuze, taking up Simondon's conceptual framework, repurposes it for his ontology of difference, elevating intensity to the rank of generic concept of being, thus bypassing notions of negativity and individuals as base, in favour of the productive and universal character of difference. In Deleuze, the correlation between intensity and speed is fraught with ambiguities, with each term threatening to subsume the other; this rampant tension becomes explicitly antagonistic when taken up by the diverse strands of contemporary accelerationism, resulting in two extreme cases in the posthuman discourse: either a pure becoming, achieved through destruction, or through abstraction that does away with intensity altogether; or an intensity without movement or speed, that remains a pure jouissance. Both cases appear to stumble over the problem of individuation, if not disindividuation. Hence, we wish to raise the following question: in what way can one think of an accelerationist politics with intensity, or an intensive politics without the fetishisation of speed? We consider this question central to the interrogation of the limits of acceleration and posthuman discourse, thus requiring a new philosophical thought on intensity and speed.


Author(s):  
Elena Lombardi

The literature of the Italian Due- and Trecento frequently calls into play the figure of a woman reader. From Guittone d’Arezzo’s piercing critic, the ‘villainous woman’, to the mysterious Lady who bids Guido Cavalcanti to write his grand philosophical song, to Dante’s female co-editors in the Vita Nova and his great characters of female readers, such as Francesca and Beatrice in the Comedy, all the way to Boccaccio’s overtly female audience, this particular sort of interlocutor appears to be central to the construct of textuality and the construction of literary authority in these times. The aim of this book is to shed light on this figure by contextualizing her within the history of female literacy, the material culture of the book, and the ways in which writers and poets of earlier traditions (in particular Occitan and French) imagined her. Its argument is that these figures of women readers are not mere veneers between a male author and a ‘real’ male readership, but that, although fictional, they bring several advantages to their vernacular authors, such as orality, the mother tongue, the recollection of the delights of early education, literality, freedom in interpretation, absence of teleology, the beauties of ornamentation and amplification, a reduced preoccupation with the fixity of the text, the pleasure of making mistakes, dialogue with the other, the extension of desire, original simplicity, and new and more flexible forms of authority.


2020 ◽  
Vol 11 (1) ◽  
pp. 353
Author(s):  
Thomas Flayols ◽  
Andrea Del Prete ◽  
Majid Khadiv ◽  
Nicolas Mansard ◽  
Ludovic Righetti

Contacts between robots and environment are often assumed to be rigid for control purposes. This assumption can lead to poor performance when contacts are soft and/or underdamped. However, the problem of balancing on soft contacts has not received much attention in the literature. This paper presents two novel approaches to control a legged robot balancing on visco-elastic contacts, and compares them to other two state-of-the-art methods. Our simulation results show that performance heavily depends on the contact stiffness and the noises/uncertainties introduced in the simulation. Briefly, the two novel controllers performed best for soft/medium contacts, whereas “inverse-dynamics control under rigid-contact assumptions” was the best one for stiff contacts. Admittance control was instead the most robust, but suffered in terms of performance. These results shed light on this challenging problem, while pointing out interesting directions for future investigation.


1999 ◽  
Vol 18 (3-4) ◽  
pp. 265-273
Author(s):  
Giovanni B. Garibotto

The paper is intended to provide an overview of advanced robotic technologies within the context of Postal Automation services. The main functional requirements of the application are briefly referred, as well as the state of the art and new emerging solutions. Image Processing and Pattern Recognition have always played a fundamental role in Address Interpretation and Mail sorting and the new challenging objective is now off-line handwritten cursive recognition, in order to be able to handle all kind of addresses in a uniform way. On the other hand, advanced electromechanical and robotic solutions are extremely important to solve the problems of mail storage, transportation and distribution, as well as for material handling and logistics. Finally a short description of new services of Postal Automation is referred, by considering new emerging services of hybrid mail and paper to electronic conversion.


Author(s):  
Alexander Diederich ◽  
Christophe Bastien ◽  
Karthikeyan Ekambaram ◽  
Alexis Wilson

The introduction of automated L5 driving technologies will revolutionise the design of vehicle interiors and seating configurations, improving occupant comfort and experience. It is foreseen that pre-crash emergency braking and swerving manoeuvres will affect occupant posture, which could lead to an interaction with a deploying airbag. This research addresses the urgent safety need of defining the occupant’s kinematics envelope during that pre-crash phase, considering rotated seat arrangements and different seatbelt configurations. The research used two different sets of volunteer tests experiencing L5 vehicle manoeuvres, based in the first instance on 22 50th percentile fit males wearing a lap-belt (OM4IS), while the other dataset is based on 87 volunteers with a BMI range of 19 to 67 kg/m2 wearing a 3-point belt (UMTRI). Unique biomechanics kinematics corridors were then defined, as a function of belt configuration and vehicle manoeuvre, to calibrate an Active Human Model (AHM) using a multi-objective optimisation coupled with a Correlation and Analysis (CORA) rating. The research improved the AHM omnidirectional kinematics response over current state of the art in a generic lap-belted environment. The AHM was then tested in a rotated seating arrangement under extreme braking, highlighting that maximum lateral and frontal motions are comparable, independent of the belt system, while the asymmetry of the 3-point belt increased the occupant’s motion towards the seatbelt buckle. It was observed that the frontal occupant kinematics decrease by 200 mm compared to a lap-belted configuration. This improved omnidirectional AHM is the first step towards designing safer future L5 vehicle interiors.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-22
Author(s):  
Jerzy Proficz

Two novel algorithms for the all-gather operation resilient to imbalanced process arrival patterns (PATs) are presented. The first one, Background Disseminated Ring (BDR), is based on the regular parallel ring algorithm often supplied in MPI implementations and exploits an auxiliary background thread for early data exchange from faster processes to accelerate the performed all-gather operation. The other algorithm, Background Sorted Linear synchronized tree with Broadcast (BSLB), is built upon the already existing PAP-aware gather algorithm, that is, Background Sorted Linear Synchronized tree (BSLS), followed by a regular broadcast distributing gathered data to all participating processes. The background of the imbalanced PAP subject is described, along with the PAP monitoring and evaluation topics. An experimental evaluation of the algorithms based on a proposed mini-benchmark is presented. The mini-benchmark was performed over 2,000 times in a typical HPC cluster architecture with homogeneous compute nodes. The obtained results are analyzed according to different PATs, data sizes, and process numbers, showing that the proposed optimization works well for various configurations, is scalable, and can significantly reduce the all-gather elapsed times, in our case, up to factor 1.9 or 47% in comparison with the best state-of-the-art solution.


2021 ◽  
pp. 109634802098727
Author(s):  
Josip Mikulić ◽  
Damir Krešić ◽  
Maja Šerić

The current study intends to contribute to a better understanding of the medical tourism experience. In particular, this study uses data from a survey-based study conducted on a sample of 1,209 medical tourists in Croatia. On the one hand, this study aims to explore and shed light on the decision-making process of medical tourists, and, on the other hand, to reveal which elements of both the medical institution and the destination where it is located, have largest potentials to drive medical tourist delight and/or frustration, in accordance with the three-factor theory of customer satisfaction.


Robotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Victor Massagué Respall ◽  
Stefano Nolfi

We investigate whether standard evolutionary robotics methods can be extended to support the evolution of multiple behaviors by forcing the retention of variations that are adaptive with respect to all required behaviors. This is realized by selecting the individuals located in the first Pareto fronts of the multidimensional fitness space in the case of a standard evolutionary algorithms and by computing and using multiple gradients of the expected fitness in the case of a modern evolutionary strategies that move the population in the direction of the gradient of the fitness. The results collected on two extended versions of state-of-the-art benchmarking problems indicate that the latter method permits to evolve robots capable of producing the required multiple behaviors in the majority of the replications and produces significantly better results than all the other methods considered.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


Author(s):  
Yunfei Fu ◽  
Hongchuan Yu ◽  
Chih-Kuo Yeh ◽  
Tong-Yee Lee ◽  
Jian J. Zhang

Brushstrokes are viewed as the artist’s “handwriting” in a painting. In many applications such as style learning and transfer, mimicking painting, and painting authentication, it is highly desired to quantitatively and accurately identify brushstroke characteristics from old masters’ pieces using computer programs. However, due to the nature of hundreds or thousands of intermingling brushstrokes in the painting, it still remains challenging. This article proposes an efficient algorithm for brush Stroke extraction based on a Deep neural network, i.e., DStroke. Compared to the state-of-the-art research, the main merit of the proposed DStroke is to automatically and rapidly extract brushstrokes from a painting without manual annotation, while accurately approximating the real brushstrokes with high reliability. Herein, recovering the faithful soft transitions between brushstrokes is often ignored by the other methods. In fact, the details of brushstrokes in a master piece of painting (e.g., shapes, colors, texture, overlaps) are highly desired by artists since they hold promise to enhance and extend the artists’ powers, just like microscopes extend biologists’ powers. To demonstrate the high efficiency of the proposed DStroke, we perform it on a set of real scans of paintings and a set of synthetic paintings, respectively. Experiments show that the proposed DStroke is noticeably faster and more accurate at identifying and extracting brushstrokes, outperforming the other methods.


Sign in / Sign up

Export Citation Format

Share Document