bivalve tissues
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 6)

H-INDEX

2
(FIVE YEARS 1)

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 99
Author(s):  
Ignacio Leyva-Valencia ◽  
Jesús Hernández-Castro ◽  
Christine Band-Schmidt ◽  
Andrew Turner ◽  
Alison O’Neill ◽  
...  

Most of the shellfish fisheries of Mexico occur in the Gulf of California. In this region, known for its high primary productivity, blooms of diatoms and dinoflagellates are common, occurring mainly during upwelling events. Dinoflagellates that produce lipophilic toxins are present, where some outbreaks related to okadaic acid and dinophisystoxins have been recorded. From January 2015 to November 2017 samples of three species of wild bivalve mollusks were collected monthly in five sites in the southern region of Bahía de La Paz. Pooled tissue extracts were analyzed using LC-MS/MS to detect lipophilic toxins. Eighteen analogs of seven toxin groups, including cyclic imines were identified, fortunately individual toxins did not exceed regulatory levels and also the total toxin concentration for each bivalve species was lower than the maximum permitted level for human consumption. Interspecific differences in toxin number and concentration were observed in three species of bivalves even when the samples were collected at the same site. Okadaic acid was detected in low concentrations, while yessotoxins and gymnodimines had the highest concentrations in bivalve tissues. Although in low quantities, the presence of cyclic imines and other lipophilic toxins in bivalves from the southern Gulf of California was constant.


2020 ◽  
Vol 8 (12) ◽  
pp. 1033
Author(s):  
Beatrice De Felice ◽  
Marco Parolini

Exposure to nanoparticles (NPs) has been identified as a major concern for marine ecosystems. Because of their peculiar physico-chemical features, NPs are accumulated in marine organisms, which suffer a variety of adverse effects. In particular, bivalve mollusks represent a unique target for NPs, mainly because they are suspension-feeders with highly developed processes for cellular internalization of nano- and micrometric particles. Several studies have demonstrated that the uptake and the accumulation of NPs can induce sub-lethal effects towards marine bivalves. However, to understand the real risk of NP exposures the application of the so-called “omics” techniques (e.g., proteomics, genomics, metabolomics, lipidomics) has been suggested. In particular, proteomics has been used to study the effects of NPs and their mechanism(s) of action in marine bivalves, but to date its application is still limited. The present review aims at summarizing the state of the art concerning the application of proteomics as a tool to investigate the effects of nanoparticles on the proteome of marine bivalves, and to critically discuss the advantages and limitations of proteomics in this field of research. Relying on results obtained by studies that applied proteomics on bivalve tissues, proteomics application needs to be considered cautiously as a promising and valuable tool to shed light on toxicity and mechanism(s) of action of NPs. Although on one hand, the analysis of the current literature demonstrated undeniable strengths, potentiality and reliability of proteomics, on the other hand a number of limitations suggest that some gaps of knowledge need to be bridged, and methodological and technical improvements are necessary before proteomics can be readily and routinely applied to nanotoxicology studies.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3636
Author(s):  
Ching-Feng Wu ◽  
Ching-Hung Chen ◽  
Ching-Yang Wu ◽  
Chen-Si Lin ◽  
Yao-Chi Su ◽  
...  

Bivalves, such as freshwater clams (Corbicula fluminea) and hard clams (Meretrix lusoria), are the most extensive and widely grown shellfish in land-based ponds in Taiwan. However, few studies have examined the contamination of bivalves by quinolone and organophosphorus insecticides. Thus, we adapted an established procedure to analyze 8 quinolones and 12 organophosphorus insecticides using liquid and gas chromatography–tandem mass spectrometry. Surveys in Taiwan have not noted high residual levels of these chemicals in bivalve tissues. A total of 58 samples of freshwater or hard clams were obtained from Taiwanese aquafarms. We identified 0.03 mg/kg of enrofloxacin in one freshwater clam, 0.024 mg/kg of flumequine in one freshwater clam, 0.02 mg/kg of flumequine in one hard clam, 0.05 mg/kg of chlorpyrifos in one freshwater clam, 0.03 mg/kg of chlorpyrifos in one hard clam, and 0.02 mg/kg of trichlorfon in one hard clam. The results indicated that 5.17% of the samples had quinolone insecticide residues and 5.17% had organophosphorus residues. However, the estimated daily intake (EDI)/acceptable daily intake quotient (ADI) indicated no significant risk and no immediate health risk from the consumption of bivalves. These results provide a reference for the food-safety screening of veterinary drugs and pesticides in aquatic animals. Aquatic products should be frequently screened for residues of prohibited chemicals to safeguard human health.


2020 ◽  
Vol 10 (10) ◽  
pp. 3426 ◽  
Author(s):  
Alexandra Lepoutre ◽  
Théo Grilot ◽  
Sarah Jean ◽  
Alain Geffard ◽  
Emilie Lance

Cyanobacterial proliferations display rapid spatiotemporal variations that can interfere in the assessment of water contamination levels by microcystins (MC), and make necessary the use of integrative tools. This study evaluates the pertinence of bivalves Anodonta anatina and Dreissena polymorpha as bioindicators of the presence of MC-producing cyanobacteria in water. Ingested MC accumulates into two fractions in bivalve tissues—the cellular free and the protein-bound fractions—both forming the total MC fraction. Mussels were exposed to the cyanobacteria Planktothrix agardhii at densities producing an equivalent of 1, 10 and 100 µg/L of intracellular MC, with the evaluation of: (i) cyanobacterial cells and MC daily intake by mussels, (ii) free and total MC kinetics in whole individuals (using all the tissues) or only in the digestive gland, during and after the exposure, (iii) bioaccumulation factors. For each species, the kinetics of the two accumulation fractions were compared to evaluate which one best reflect levels and dynamics of MC-producing cyanobacteria in water. Results showed that the dynamic of free MC in bivalve tissues better highlight the dynamic of intracellular MC in water. Using whole D. polymorpha may be appropriate to reveal and discriminate the water contamination levels above densities of cyanobacteria producing 1 µg MC/L. Digestive glands of A. anatina appeared more sensitive to reveal low environmental concentration, but without direct correlation with levels of water contamination. Further experimentations in situ are necessary to confirm those results in order to propose the use of freshwater bivalves for a biomonitoring of MC-producing cyanobacteria in fresh waters.


2019 ◽  
Vol 6 (10) ◽  
pp. 191298
Author(s):  
Lindsey F. Dougherty ◽  
Alexandria K. Niebergall ◽  
Corey D. Broeckling ◽  
Kevin L. Schauer ◽  
Jingchun Li

Members of the marine bivalve family Limidae are known for their bright appearance. In this study, their colourful tissues were examined as a defence mechanism towards predators. We showed that when attacked by the peacock mantis shrimp ( Odontodactylus scyllarus ), the ‘disco’ clam, Ctenoides ales , opened wide to expose brightly coloured tissues to the predator. The predator also significantly preferred to consume the internal, non-colourful clam tissues than the external, colourful tissues. Mass spectrometry-based metabolomic analysis confirmed that colourful tissues had significantly different chemical compositions than the non-colourful ones. The internal, non-colourful tissues had metabolite profiles more similar to an outgroup bivalve than to the species' own colourful external tissues. A number of the compounds that differentiated the colourful tissues from the non-colourful tissues appeared to be peptide-like, which potentially serve as the underlying defensive compounds. This is the first study demonstrating that colourful bivalve tissues are used for chemical defence.


2017 ◽  
Vol 13 (6) ◽  
pp. 1123-1124
Author(s):  
Sara Valsecchi ◽  
Nicoletta Ademollo ◽  
Luisa Patrolecco ◽  
Marianna Rusconi ◽  
Stefano Polesello

The Analyst ◽  
2015 ◽  
Vol 140 (9) ◽  
pp. 3082-3089 ◽  
Author(s):  
C. A. García-Negrete ◽  
M. C. Jiménez de Haro ◽  
J. Blasco ◽  
M. Soto ◽  
A. Fernández

Optimized STEM-in-SEM imaging of gill explants is applied to assess the subcellular location of nanoparticles and their possible toxic effects.


Organotin ◽  
1996 ◽  
pp. 503-533 ◽  
Author(s):  
Joseph G. Grovhoug ◽  
Roy L. Fransham ◽  
Aldis O. Valkirs ◽  
Bradley M. Davidson

Sign in / Sign up

Export Citation Format

Share Document