scholarly journals Numerical Modeling of Air Pollutants and Greenhouse Gases Emissions in Intermodal Transport Chains

2021 ◽  
Vol 9 (6) ◽  
pp. 679
Author(s):  
Mónica M. Ramalho ◽  
Tiago A. Santos

This paper discusses the most attractive emission compliance options (emission abatement technologies and cleaner fuels) in intermodal transport chains that include short sea shipping. Most studies on emissions-based transport chain comparisons have estimated high levels of nitrogen and sulfur oxide emissions in maritime transportation, decreasing its competitiveness. However, the consequences of regulatory and technological developments and the integration of maritime transport in intermodal transport chains have not yet been considered in detail. In order to address this research gap, a numerical model for computing emissions from different transport modes in an intermodal transport network, under the effect of these developments, is presented that is based on bottom–up emission factors that depend on the fuel type, engine type, and operational profile of each vehicle. Different emissions scenarios are chosen for specific unimodal and intermodal routes (short sea shipping-based) between Portugal and northwestern Europe. Conclusions are drawn on estimated values of air pollutant emissions and greenhouse emissions, in CO2-eq per unit of cargo, in each scenario. These results allow the identification of the most environmentally friendly transport chains, thus supporting the development of adequate transport policies.

2017 ◽  
Vol 16 (4) ◽  
pp. 809-819 ◽  
Author(s):  
Gabriel Lazar ◽  
Iulia Carmen Ciobotici Terryn ◽  
Andreea Cocarcea

2021 ◽  
Vol 7 (3) ◽  
pp. eabd6696
Author(s):  
Zongbo Shi ◽  
Congbo Song ◽  
Bowen Liu ◽  
Gongda Lu ◽  
Jingsha Xu ◽  
...  

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% (except for London), the total gaseous oxidant (Ox = NO2 + O3) showed limited change, and PM2.5 concentrations decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophisticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements were notably more limited than some earlier reports or observational data suggested.


2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


Energy ◽  
2021 ◽  
pp. 121724
Author(s):  
Geng Liu ◽  
Shida Sun ◽  
Chao Zou ◽  
Bo Wang ◽  
Lin Wu ◽  
...  

1986 ◽  
Vol 12 (1-4) ◽  
pp. 351-362 ◽  
Author(s):  
Ken Sexton ◽  
Lurance M. Webber ◽  
Steven B. Hayward ◽  
Richard G. Sextro

Author(s):  
Michelle N. Rosado-Pérez ◽  
Karen Ríos-Soto

Asthma is a respiratory disease that affects the lungs, with a prevalence of 339.4 million people worldwide [G. Marks, N. Pearce, D. Strachan, I. Asher and P. Ellwood, The Global Asthma Report 2018, globalasthmareport.org (2018)]. Many factors contribute to the high prevalence of asthma, but with the rise of the industrial age, air pollutants have become one of the main Ultrafine particles (UFPs), which are a type of air pollutant that can affect asthmatics the most. These UFPs originate primarily from the combustion of motor vehicles [P. Solomon, Ultrafine particles in ambient air. EM: Air and Waste Management Association’s Magazine for Environmental Managers (2012)] and although in certain places some regulations to control their emission have been implemented they might not be enough. In this work, a mathematical model of reaction–diffusion type is constructed to study how UFPs grow and disperse in the environment and in turn how they affect an asthmatic population. Part of our focus is on the existence of traveling wave solutions and their minimum asymptotic speed of pollutant propagation [Formula: see text]. Through the analysis of the model it was possible to identify the necessary threshold conditions to control the pollutant emissions and consequently reduce the asthma episodes in the population. Analytical and numerical results from this work prove how harmful the UFEs are for the asthmatic population and how they can exacerbate their asthma episodes.


Sign in / Sign up

Export Citation Format

Share Document