scholarly journals Sensor Placement with Two-Dimensional Equal Arc Length Non-Uniform Sampling for Underwater Terrain Deformation Monitoring

2021 ◽  
Vol 9 (9) ◽  
pp. 954
Author(s):  
Chunying Xu ◽  
Junwei Hu ◽  
Jiawang Chen ◽  
Yongqiang Ge ◽  
Ruixin Liang

Sensor placement plays an important role in terrain deformation monitoring systems and has an essential effect on data collection. The difficulty of sensor placement entails obtaining the most adequate and reliable information with the fewest number of sensors. Most sensor placement schemes are currently based on randomized non-uniform sampling and probability statistics, such as structural modality and optimization methods, which are difficult to directly apply due to the randomness and spatial heterogeneity of terrain deformation. In this study, the placement conditions of two-dimensional non-uniform sampling with equal arc length were deduced for underwater terrain deformation monitoring based on the MEMS accelerometer network. In order to completely reconstruct the underwater terrain, the arc length interval of the sensors should be less than 12Ω (Ω is the maximum frequency of the detected terrain). The maximum MRE and maximum RMSE were both less than seven percent in a terrain deformation monitoring experiment and a water tank test. The research results help technicians apply contact sensor arrays for underwater terrain monitoring.

2021 ◽  
Author(s):  
Chunying Xu ◽  
Junwei Hu ◽  
Jiawang Chen ◽  
Chen Cao ◽  
Youngqiang Ge ◽  
...  

Abstract Non-uniform sampling with equal arc length intervals can be found in shape measurements with contact sensor arrays. In this study, the conditions of non-uniform spatial sampling with an equal arc length interval are derived from two frame theorems. First, for general non-uniform sampling, the condition is that the equal arc length interval of the sensors should be less than 1/4Ω. Second, for strictly increasing sampling, the condition is that the equal arc length interval of the sensors should be less than 1/2Ω. The Ω is the maximum frequency of the detected object. For the latter, if the sampling frequency is more twice than the sampling frequency required, the reconstruction error (RRMSE and MRE) is less than 5%. If the sampling frequency is more than 2.5 times, the reconstruction error is less than 3%. The simulation and the experiment are carried out and the results show that a sensor array with equal arc length interval can reconstruct the detected object with high accuracy.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
XianHong Li ◽  
HaiBin Yu ◽  
MingZhe Yuan

This paper presents a design method of the optimal proportional-integral-derivative (PID) controller withɛ-Routh stability for different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented integral squared error (AISE) performance index which contains control error and at least first-order error derivative, or even may containnth-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optimization (NLCO) problem via Lyapunov theorems. Therefore, optimal PID controller could be obtained by solving NLCO problem through interior method or other optimization methods. The proposed method can be applied for different processes, and optimal PID controllers under various control weight matrices andɛ-Routh stability are presented for different processes. Control weight matrix andɛ-Routh stability’s effects on system performances are studied, and different tuning methods’ system performances are also discussed.ɛ-Routh stability’s effects on disturbance rejection ability are investigated, and different tuning methods’ disturbances rejection ability is studied. To further illustrate the proposed method, experimental results of coupled water tank system (CWTS) under different set points are presented. Both simulation results and experiment results show the effectiveness and usefulness of the proposed method.


Author(s):  
Anna G. Matveeva ◽  
Victoria N. Syryamina ◽  
Vyacheslav M. Nekrasov ◽  
Michael K. Bowman

Non-uniform schemes for collection of pulse dipole spectroscopy data can decrease and redistribute noise in the distance spectrum for increased sensitivity and throughput.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1262
Author(s):  
Sunil Kumar Mishra ◽  
Amitkumar V. Jha ◽  
Vijay Kumar Verma ◽  
Bhargav Appasani ◽  
Almoataz Y. Abdelaziz ◽  
...  

This paper presents an optimized algorithm for event-triggered control (ETC) of networked control systems (NCS). Initially, the traditional backstepping controller is designed for a generalized nonlinear plant in strict-feedback form that is subsequently extended to the ETC. In the NCS, the controller and the plant communicate with each other using a communication network. In order to minimize the bandwidth required, the number of samples to be sent over the communication channel should be reduced. This can be achieved using the non-uniform sampling of data. However, the implementation of non-uniform sampling without a proper event triggering rule might lead the closed-loop system towards instability. Therefore, an optimized event triggering algorithm has been designed such that the system states are always forced to remain in stable trajectory. Additionally, the effect of ETC on the stability of backstepping control has been analyzed using the Lyapunov stability theory. Two case studies on an inverted pendulum system and single-link robot system have been carried out to demonstrate the effectiveness of the proposed ETC in terms of system states, control effort and inter-event execution time.


Sign in / Sign up

Export Citation Format

Share Document