scholarly journals Oceanic Response to Tropical Cyclone Gonu (2007) in the Gulf of Oman and the Northern Arabian Sea: Estimating Depth of the Mixed Layer Using Satellite SST and Climatological Data

2021 ◽  
Vol 9 (11) ◽  
pp. 1244
Author(s):  
Kamran Koohestani ◽  
Mohammad Nabi Allahdadi ◽  
Nazanin Chaichitehrani

The category 5-equivalent tropical Cyclone Gonu (2007) was the strongest cyclone to enter the northern Arabian Sea and Gulf of Oman. The impact of this cyclone on the sea surface temperature (SST) cooling and deepening of the mixed layer was investigated herein using an optimally interpolated (OI) cloud-free sea surface temperature (SST) dataset, climatological profiles of water temperature, and data from Argo profilers. SST data showed a maximum cooling of 1.7–6.5 °C during 1–7 June 2007 over the study area, which is similar to that of slow- to medium-moving cyclones in previous studies. The oceanic heat budget equation with the assumptions of the dominant turbulent mixing effect was used to establish relationships between SST and mixed layer depth (MLD) for regions that were directly affected by cyclone-induced turbulent mixing. The relationships were applied to the SST maps from satellite to obtain maps of MLD for 1–7 June, when Gonu was over the study area. Comparing with the measured MLD from Argo data showed that this approach estimated the MLDs with an average error of 15%, which is an acceptable amount considering the convenience of this approach in estimating MLD and the simplifications applied in the heat budget equation. Some inconsistencies in calculating MLD were attributed to use of climatological temperature profiles that may not have appropriately represented the pre-cyclone conditions due to pre-existing cold/warm core eddies. Estimation of the diapycnal diffusion that quantified the turbulent mixing across the water column showed consistent temporal and spatial variations with the calculated MLDs.

2008 ◽  
Vol 21 (11) ◽  
pp. 2451-2465 ◽  
Author(s):  
Yan Du ◽  
Tangdong Qu ◽  
Gary Meyers

Abstract Using results from the Simple Ocean Data Assimilation (SODA), this study assesses the mixed layer heat budget to identify the mechanisms that control the interannual variation of sea surface temperature (SST) off Java and Sumatra. The analysis indicates that during the positive Indian Ocean Dipole (IOD) years, cold SST anomalies are phase locked with the season cycle. They may exceed −3°C near the coast of Sumatra and extend as far westward as 80°E along the equator. The depth of the thermocline has a prominent influence on the generation and maintenance of SST anomalies. In the normal years, cooling by upwelling–entrainment is largely counterbalanced by warming due to horizontal advection. In the cooling episode of IOD events, coastal upwelling–entrainment is enhanced, and as a result of mixed layer shoaling, the barrier layer no longer exists, so that the effect of upwelling–entrainment can easily reach the surface mixed layer. Horizontal advection spreads the cold anomaly to the interior tropical Indian Ocean. Near the coast of Java, the northern branch of an anomalous anticyclonic circulation spreads the cold anomaly to the west near the equator. Both the anomalous advection and the enhanced, wind-driven upwelling generate the cold SST anomaly of the positive IOD. At the end of the cooling episode, the enhanced surface thermal forcing overbalances the cooling effect by upwelling/entrainment, and leads to a warming in SST off Java and Sumatra.


2006 ◽  
Vol 19 (12) ◽  
pp. 2953-2968 ◽  
Author(s):  
Takashi Mochizuki ◽  
Hideji Kida

Abstract The seasonality of the decadal sea surface temperature (SST) anomalies and the related physical processes in the northwestern Pacific were investigated using a three-dimensional bulk mixed layer model. In the Kuroshio–Oyashio Extension (KOE) region, the strongest decadal SST anomaly was observed during December–February, while that of the central North Pacific occurred during February–April. From an examination of the seasonal heat budget of the ocean mixed layer, it was revealed that the seasonal-scale enhancement of the decadal SST anomaly in the KOE region was controlled by horizontal Ekman temperature transport in early winter and by vertical entrainment in autumn. The temperature transport by the geostrophic current made only a slight contribution to the seasonal variation of the decadal SST anomaly, despite controlling the upper-ocean thermal conditions on decadal time scales through the slow Rossby wave adjustment to the wind stress curl. When averaging over the entire KOE region, the contribution from the net sea surface heat flux was also no longer significantly detected. By examining the horizontal distributions of the local thermal damping rate, however, it was concluded that the wintertime decadal SST anomaly in the eastern KOE region was rather damped by the net sea surface heat flux. It was due to the fact that the anomalous local thermal damping of the SST anomaly resulting from the vertical entrainment in autumn was considerably strong enough to suppress the anomalous local atmospheric thermal forcing that acted to enhance the decadal SST anomaly.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
Soline Bielli ◽  
Christelle Barthe ◽  
Olivier Bousquet ◽  
Pierre Tulet ◽  
Joris Pianezze

A set of numerical simulations is relied upon to evaluate the impact of air-sea interactions on the behaviour of tropical cyclone (TC) Bejisa (2014), using various configurations of the coupled ocean-atmosphere numerical system Meso-NH-NEMO. Uncoupled (SST constant) as well as 1D (use of a 1D ocean mixed layer) and 3D (full 3D ocean) coupled experiments are conducted to evaluate the impact of the oceanic response and dynamic processes, with emphasis on the simulated structure and intensity of TC Bejisa. Although the three experiments are shown to properly capture the track of the tropical cyclone, the intensity and the spatial distribution of the sea surface cooling show strong differences from one coupled experiment to another. In the 1D experiment, sea surface cooling (∼1 ∘C) is reduced by a factor 2 with respect to observations and appears restricted to the depth of the ocean mixed layer. Cooling is maximized along the right-hand side of the TC track, in apparent disagreement with satellite-derived sea surface temperature observations. In the 3D experiment, surface cooling of up to 2.5 ∘C is simulated along the left hand side of the TC track, which shows more consistency with observations both in terms of intensity and spatial structure. In-depth cooling is also shown to extend to a much deeper depth, with a secondary maximum of nearly 1.5 ∘C simulated near 250 m. With respect to the uncoupled experiment, heat fluxes are reduced from about 20% in both 1D and 3D coupling configurations. The tropical cyclone intensity in terms of occurrence of 10-m TC wind is globally reduced in both cases by about 10%. 3D-coupling tends to asymmetrize winds aloft with little impact on intensity but rather a modification of the secondary circulation, resulting in a slight change in structure.


2004 ◽  
Vol 31 (2) ◽  
pp. 549-560 ◽  
Author(s):  
Tariq Masood Ali Khan ◽  
Dewan Abdul Quadir ◽  
Tad S. Murty ◽  
Majajul Alam Sarker

2015 ◽  
Vol 11 (1) ◽  
pp. 45-61 ◽  
Author(s):  
P. A. Araya-Melo ◽  
M. Crucifix ◽  
N. Bounceur

Abstract. The sensitivity of the Indian monsoon to the full spectrum of climatic conditions experienced during the Pleistocene is estimated using the climate model HadCM3. The methodology follows a global sensitivity analysis based on the emulator approach of Oakley and O'Hagan (2004) implemented following a three-step strategy: (1) development of an experiment plan, designed to efficiently sample a five-dimensional input space spanning Pleistocene astronomical configurations (three parameters), CO2 concentration and a Northern Hemisphere glaciation index; (2) development, calibration and validation of an emulator of HadCM3 in order to estimate the response of the Indian monsoon over the full input space spanned by the experiment design; and (3) estimation and interpreting of sensitivity diagnostics, including sensitivity measures, in order to synthesise the relative importance of input factors on monsoon dynamics, estimate the phase of the monsoon intensity response with respect to that of insolation, and detect potential non-linear phenomena. By focusing on surface temperature, precipitation, mixed-layer depth and sea-surface temperature over the monsoon region during the summer season (June-July-August-September), we show that precession controls the response of four variables: continental temperature in phase with June to July insolation, high glaciation favouring a late-phase response, sea-surface temperature in phase with May insolation, continental precipitation in phase with July insolation, and mixed-layer depth in antiphase with the latter. CO2 variations control temperature variance with an amplitude similar to that of precession. The effect of glaciation is dominated by the albedo forcing, and its effect on precipitation competes with that of precession. Obliquity is a secondary effect, negligible on most variables except sea-surface temperature. It is also shown that orography forcing reduces the glacial cooling, and even has a positive effect on precipitation. As regards the general methodology, it is shown that the emulator provides a powerful approach, not only to express model sensitivity but also to estimate internal variability and detect anomalous simulations.


Sign in / Sign up

Export Citation Format

Share Document