scholarly journals Active Methanotrophs and Their Response to Temperature in Marine Environments: An Experimental Study

2021 ◽  
Vol 9 (11) ◽  
pp. 1261
Author(s):  
Jing Li ◽  
Xiaoqing Xu ◽  
Changling Liu ◽  
Nengyou Wu ◽  
Zhilei Sun ◽  
...  

Aerobic methane (CH4) oxidation plays a significant role in marine CH4 consumption. Temperature changes resulting from, for example, global warming, have been suggested to be able to influence methanotrophic communities and their CH4 oxidation capacity. However, exact knowledge regarding temperature controls on marine aerobic methane oxidation is still missing. In this study, CH4 consumption and the methanotrophic community structure were investigated by incubating sediments from shallow (Bohai Bay) and deep marine environments (East China Sea) at 4, 15, and 28 °C for up to 250 days. The results show that the abundance of the methanotrophic population, dominated by the family Methylococcaceae (type I methanotrophs), was significantly elevated after all incubations and that aerobic methane oxidation for both areas had a strong temperature sensitivity. A positive correlation between the CH4 oxidation rate and temperature was witnessed in the Bohai Bay incubations, whereas for the East China Sea incubations, the optimum temperature was 15 °C. The systematic variations of pmoA OTUs between the Bohai Bay and East China Sea incubations indicated that the exact behaviors of CH4 oxidation rates with temperature are related to the different methanotrophic community structures in shallow and deep seas. These results are of great significance for quantitatively evaluating the biodegradability of CH4 in different marine environments.

2020 ◽  
Author(s):  
Jianye Ren ◽  
Chao Lei ◽  
Junxia Zhang

<p>Bohai Bay, East China Sea and South China Sea are three of the largest-scale Cenozoic petroleum-rich sedimentary basins along the Chinese continental margin. For the past decades, the wealth of geological and geophysical data was acquired by the petroleum industries, which provide an opportunity to have a synthetic study on these basins.</p><p>(1) Structure and stratigraphic framework for the Cenozoic basins in the Bohai Bay, the East China Sea and the South China Sea are revealed to be different. The Bohai Bay basin was imaged to be a pull-apart basin, through which a regional-scale strike-slip fault went. The South China Sea was controlled by extension, which generated a serial of deepwater basins on the hyper-extended crust adjacent to the oceanic crust, most of which was controlled by the detachment faults. Between the Bohai Bay basin and East China Sea is the East China Sea, at the deep level of which a serial of thrust faults occurred. It indicated the regional compression from the pacific plate toward the East China.</p><p>(2) Based on the different structure and stratigraphic sequence in the basins along the Chinese continental margin, the basins evolutions were reconstructed. In Late Paleocene to Middle Eocene, distributed faulting occurred along the Chinese continental margin. Subsequently, in Late Eocene the evolution of these three basins were observed to be different. The Bohai Bay Basin was strongly influenced by the oblique strike-slip faulting, and lasted to the latest Late Oligocene, followed by the thermal subsidence in Miocene and a pulse of acceleration subsidence since Pliocene. In contrast to Bohai Bay basin, the continental shelf basin of the East China Sea experienced a long-time compression in the context of back-arc setting, and subsequently has a regional subsidence since Early Pliocene. The continental crust of the South China Sea was thinned since Late Eocene and eventually broke apart in Oligocene to form oceanic crust, where detachment faults bounded a serial of deepwater basins.</p><p>The different in basin structures and evolutions since Late Eocene was consistent with the event of plate organization in the western Pacific at that time. Before the event, Chinese continental margin was influenced by the interaction of Eurasian and Pacific plates, e.g. double-plate system. The subduction and related retreat of Pacific plate led to the back-arc extension of the Chinese continental margin, generating widely distributed grabens and half grabens filled with sediments. After this event, the Chinese continental margin was deformed by the interaction between India, Eurasian, Pacific and Philippine Sea plates, e.g. multi-plate system. In this context, several dynamic forces affected the evolution of the Chinese continental margins was observed, e.g. the collision between India and Eurasia, the change of the subduction direction of the Pacific plate, the subduction collision of the proto-South China Sea, the northward movement of the Philippine Sea plate. These complex plate reorganizations lead to the different genetic type of basins in Chinese continental margin.</p>


Author(s):  
Huiping Xu ◽  
Changwei Xu ◽  
Rufu Qin ◽  
Yang Yu ◽  
Shangqin Luo ◽  
...  

2013 ◽  
Vol 20 (6) ◽  
pp. 1284-1292
Author(s):  
Nan LIN ◽  
Yazhou JIANG ◽  
Xingwei YUAN ◽  
Jing GUO ◽  
Jianzhong LING ◽  
...  

2018 ◽  
Vol 25 (3) ◽  
pp. 576 ◽  
Author(s):  
Shuzhang LIANG ◽  
Wei SONG ◽  
Ming ZHAO ◽  
Wei CHEN ◽  
Yu LI ◽  
...  

2018 ◽  
Vol 25 (3) ◽  
pp. 632
Author(s):  
Zunlei LIU ◽  
Cheng CHEN ◽  
Xingwei YUAN ◽  
Linlin YANG ◽  
Liping YAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document