scholarly journals Effect of Dissipation on the Moonpool-Javelin Wave Energy Converter

2021 ◽  
Vol 9 (12) ◽  
pp. 1444
Author(s):  
Dan Yu ◽  
Keyi Wang ◽  
Yeqing Jin ◽  
Fankai Kong ◽  
Hailong Chen ◽  
...  

In this work, the hydrodynamic performance of a novel wave energy converter (WEC) configuration which combines a moonpool platform and a javelin floating buoy, called the moonpool–javelin wave energy converter (MJWEC), was studied by semianalytical, computational fluid dynamics (CFD), and experimental methods. The viscous term is added to the potential flow solver to obtain the hydrodynamic coefficients. The wave force, the added mass, the radiation damping, the wave capture, and the energy efficiency of the configuration were assessed, in the frequency and time domains, by a semianalytical method. The CFD method results and the semianalytical results were compared for the time domain by introducing nonlinear power take-off (PTO) damping; additionally, the viscous dissipation coefficients under potential flow could be confirmed. Finally, a 1:10 scale model was physically tested to validate the numerical model and further prove the feasibility of the proposed system.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2364 ◽  
Author(s):  
Hengxu Liu ◽  
Feng Yan ◽  
Fengmei Jing ◽  
Jingtao Ao ◽  
Zhaoliang Han ◽  
...  

This paper introduces a new point-absorber wave energy converter (WEC) with a moonpool buoy—the moonpool platform wave energy converter (MPWEC). The MPWEC structure includes a cylinder buoy and a moonpool buoy and a Power Take-off (PTO) system, where the relative movement between the cylindrical buoy and the moonpool buoy is exploited by the PTO system to generate energy. A 1:10 scale model was physically tested to validate the numerical model and further prove the feasibility of the proposed system. The motion responses of and the power absorbed by the MPWEC studied in the wave tank experiments were also numerically analyzed, with a potential approach in the frequency domain, and a computational fluid dynamics (CFD) code in the time domain. The good agreement between the experimental and the numerical results showed that the present numerical model is accurate enough, and therefore considering only the heave degree of freedom is acceptable to estimate the motion responses and power absorption. The study shows that the MPWEC optimum power extractions is realized over a range of wave frequencies between 1.7 and 2.5 rad/s.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5740
Author(s):  
Wei Peng ◽  
Yingnan Zhang ◽  
Xueer Yang ◽  
Jisheng Zhang ◽  
Rui He ◽  
...  

In this paper, a hybrid system integrating a fixed breakwater and an oscillating buoy type wave energy converter (WEC) is introduced. The energy converter is designed to extract the wave power by making use of the wave-induced heave motions of the three floating pontoons in front of the fixed breakwater. A preliminary experimental study is carried out to discuss the hydrodynamic performance of the hybrid system under the action of regular waves. A scale model was built in the laboratory at Hohai University, and the dissipative force from racks and gearboxes and the Ampere force from dynamos were employed as the power take-off (PTO) damping source. During the experiments, variations in numbers of key parameters, including the wave elevation, free response or damped motion of the floating pontoons, and the voltage output of the dynamos were simultaneously measured. Results indicate that the wave overtopping and breaking occurring on the upper surfaces of floating pontoons have a significant influence on the hydrodynamic performance of the system. For moderate and longer waves, the developed system proves to be effective in attenuating the incident energy, with less than 30% of the energy reflected back to the paddle. More importantly, the hydrodynamic efficiency of energy conversion for the present device can achieve approximately 19.6% at the lowest wave steepness in the model tests, implying that although the WEC model harnesses more energy in more energetic seas, the device may be more efficient for wave power extraction in a less energetic sea-state.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 842 ◽  
Author(s):  
Sunny Kumar Poguluri ◽  
Il-Hyoung Cho ◽  
Yoon Hyeok Bae

The effect of hydrodynamic performance of the wave energy converter (WEC)–rotor based on linear potential flow theory due to nonlinear viscous damping was investigated. Free decay tests were conducted using computational fluid dynamics (CFD) to obtain the viscous damping moment. The commonly used procedure for obtaining the damping moment is based on peak amplitudes which normally require a long time history records. Such long free decay records may not be possible in nodding WEC rotor due high damping. The energy method proposed by Bass and Haddara requires only the short and full range of the recorded data. This method provides sufficiently good results when the bodies have high damping. The method equates the rate of change of the total energy of a body undergoing free rolling/pitching to the rate of energy dissipated by the damping. The present study adopts a similar methodology for estimating the linear and linear plus quadratic damping. To incorporate the nonlinear viscous damping moment in the linear equation of motion, an equivalent linearization concept is used without neglecting the nonlinear damping effects. The hydrodynamic coefficients obtained from the linear potential flow theory, nonlinear viscous damping moment from the energy method and estimated PTO damping are used to solve the equation of motion of the WEC rotor. The estimated pitch free decay data shows good agreement with the simulated CFD results when compared to the linear viscous damping moment and better agreement is obtained with linear plus quadratic viscous damping moment. The regular and irregular wave analyses show that a considerable effect on the hydrodynamic performance of the WEC rotor is observed when the linear and linear plus quadratic viscous damping are included.


2017 ◽  
Vol 31 (3) ◽  
pp. 370-377 ◽  
Author(s):  
Xiong-bo Zheng ◽  
Yong Ma ◽  
Liang Zhang ◽  
Jin Jiang ◽  
Heng-xu Liu

2015 ◽  
Vol 22 (s1) ◽  
pp. 106-111 ◽  
Author(s):  
Hongtao Gao ◽  
Biao Li

Abstract Floating-type wave energy converter has the advantages of high wave energy conversion efficiency, strong shock resistance ability in rough sea and stable output power. So it is regarded as a promising energy utilization facility. The research on hydrodynamic performance of wave capture buoys is the precondition and key to the wave energy device design and optimization. A simplified motion model of the buoys in the waves is established. Based on linear wave theory, the equations of motion of buoys are derived according to Newton’s second law. The factors of wave and buoys structural parameters on wave energy absorption efficiency are discussed in the China’s Bohai Sea with short wave period and small wave height. The results show that the main factor which affects the dynamic responses of wave capture buoys is the proximity of the natural frequency of buoys to the wave period. And the incoming wave power takes a backseat role to it at constant wave height. The buoys structural parameters such as length, radius and immersed depth, influence the wave energy absorption efficiency, which play significant factors in device design. The effectiveness of this model is validated by the sea tests with small-sized wave energy devices. The establishment methods of motion model and analysis results are expected to be helpful for designing and manufacturing of floating-type wave energy converter.


Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo ◽  
Moo-Hyun Kim

Abstract The aim of this paper is to evaluate the hydrodynamic performance of a heaving buoy type wave energy converter (WEC) and power take-off (PTO) system. To simulate the nonlinear behavior of the WEC with PTO system, a three-dimensional potential numerical wave tank (PNWT) was developed. The PNWT is a numerical analysis tool that can accurately reproduce experiments in physical wave tanks. The developed time-domain PNWT utilized the previously developed NWT technique and newly adopted the side wall damping area. The PNWT is based on boundary element method with constant panels. The mixed Eulerian-Lagrangian method (MEL) and acceleration potential approach were adopted to simulate the nonlinear behaviors of free-surface nodes associated with body motions. The PM spectrum as an irregular incident wave condition was applied to the input boundary. A floating or fixed type WEC structure was placed in the center of the computational domain. A hydraulic PTO system composed of a hydraulic cylinder, hydraulic motor and generator was modeled with approximate Coulomb damping force and applied to the WEC system. Using the integrated numerical model of the WEC with PTO system, nonlinear interaction of irregular waves, the WEC structure, and the PTO system were simulated in the time domain. The optimal hydraulic pressure of the PTO condition was predicted. The hydrodynamic performance of the WEC was evaluated by comparing the linear and nonlinear analytical results and highlighted the importance accounting for nonlinear free surfaces.


2019 ◽  
Vol 18 (2) ◽  
pp. 153-159
Author(s):  
Zheng Yuan ◽  
Liang Zhang ◽  
Binzhen Zhou ◽  
Peng Jin ◽  
Xiongbo Zheng

Author(s):  
Aurélien Babarit ◽  
Benjamin Gendron ◽  
Jitendra Singh ◽  
Cécile Mélis ◽  
Philippe Jean

Since 2009, SBM Offshore has been developing the S3 Wave Energy Converter (S3 WEC). It consists in a long flexible tube made of an Electro-Active Polymer (EAP). Thus, the structural material is also the Power Take Off (PTO). In order to optimize the S3 WEC, a hydro-elastic numerical model able to predict the device dynamic response has been developed. The inner flow, elastic wall deformations and outer flow are taken into account in the model under the following assumptions: Euler equation is used for the inner flow. The flow is also assumed to be uniform. Elastic deformation of the wall tube is linearized. The outer flow is modeled using linear potential theory. These equations have been combined in order to build the numerical model. First, they are solved in the absence of the outer fluid in order to obtain the modes of response of the device. Secondly, the outer fluid is taken into account and the equation of motion is solved by making use of modal expansion. Meanwhile, experimental validation tests were conducted in the ocean basin at Ecole Centrale De Nantes. The scale model is 10m long tube made of EAP. The tube deformations were measured using the electro-active polymer. The model was also equipped with sensors in order to measure the inner pressure. Comparisons of the deformation rate between the numerical model and experimental results show good agreement, provided that the wall damping is calibrated. Eventually, results of a technico-economical parametric study of the dimensions of the device are presented.


Sign in / Sign up

Export Citation Format

Share Document