scholarly journals Invasive Fungal Diseases in Children with Hematological Malignancies Treated with Therapies That Target Cell Surface Antigens: Monoclonal Antibodies, Immune Checkpoint Inhibitors and CAR T-Cell Therapies

2021 ◽  
Vol 7 (3) ◽  
pp. 186
Author(s):  
Ioannis Kyriakidis ◽  
Eleni Vasileiou ◽  
Claudia Rossig ◽  
Emmanuel Roilides ◽  
Andreas H. Groll ◽  
...  

Since 1985 when the first agent targeting antigens on the surface of lymphocytes was approved (muromonab-CD3), a multitude of such therapies have been used in children with hematologic malignancies. A detailed literature review until January 2021 was conducted regarding pediatric patient populations treated with agents that target CD2 (alefacept), CD3 (bispecific T-cell engager [BiTE] blinatumomab), CD19 (denintuzumab mafodotin, B43, BiTEs blinatumomab and DT2219ARL, the immunotoxin combotox, and chimeric antigen receptor [CAR] T-cell therapies tisagenlecleucel and axicabtagene ciloleucel), CD20 (rituximab and biosimilars, 90Y-ibritumomab tiuxetan, ofatumumab, and obinutuzumab), CD22 (epratuzumab, inotuzumab ozogamicin, moxetumomab pasudotox, BiTE DT2219ARL, and the immunotoxin combotox), CD25 (basiliximab and inolimomab), CD30 (brentuximab vedotin and iratumumab), CD33 (gemtuzumab ozogamicin), CD38 (daratumumab and isatuximab), CD52 (alemtuzumab), CD66b (90Y-labelled BW 250/183), CD248 (ontuxizumab) and immune checkpoint inhibitors against CTLA-4 (CD152; abatacept, ipilimumab and tremelimumab) or with PD-1/PD-L1 blockade (CD279/CD274; atezolizumab, avelumab, camrelizumab, durvalumab, nivolumab and pembrolizumab). The aim of this narrative review is to describe treatment-related invasive fungal diseases (IFDs) of each category of agents. IFDs are very common in patients under blinatumomab, inotuzumab ozogamicin, basiliximab, gemtuzumab ozogamicin, alemtuzumab, and tisagenlecleucel and uncommon in patients treated with moxetumomab pasudotox, brentuximab vedotin, abatacept, ipilimumab, pembrolizumab and avelumab. Although this new era of precision medicine shows promising outcomes of targeted therapies in children with leukemia or lymphoma, the results of this review stress the necessity for ongoing surveillance and suggest the need for antifungal prophylaxis in cases where IFDs are very common complications.

Cancers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 339 ◽  
Author(s):  
Teresa Poggio ◽  
Justus Duyster ◽  
Anna Illert

T cell non-Hodgkin lymphoma (T-NHL) is a rare and heterogeneous group of neoplasms of the lymphoid system. With the exception of a few relatively indolent entities, T-NHL is typically aggressive, treatment resistant, and associated with poor prognosis. Relatively few options with proven clinical benefit are available for patients with relapsed or refractory disease. Immunotherapy has emerged as a promising treatment for the management of patients with hematological malignancies. The identification of tumor antigens has provided a large number of potential targets. Therefore, several monoclonal antibodies (alemtuzumab, SGN-30, brentuximab vedotin, and mogamulizumab), directed against tumor antigens, have been investigated in different subtypes of T-NHL. In addition to targeting antigens involved in cancer cell physiology, antibodies can stimulate immune effector functions or counteract immunosuppressive mechanisms. Chimeric antigen receptor (CAR)-T cells directed against CD30 and immune checkpoint inhibitors are currently being investigated in clinical trials. In this review, we summarize the currently available clinical evidence for immunotherapy in T-NHL, focusing on the results of clinical trials using first generation monoclonal antibodies, new immunotherapeutic agents, immune checkpoint inhibitors, and CAR-T cell therapies.


2020 ◽  
Vol 4 (3) ◽  
pp. 165-170
Author(s):  
Claude Bassil ◽  
Farhad Khimani

Cancer immunotherapy including the use of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T cell therapy (CAR-T) are showing a promising role as part of cancer therapy and slowly replacing conventional chemotherapy. However, the use of ICI and CAR-T in organ transplant recipients with malignancies could be complicated with acute rejection and graft loss. Many proposed immunosuppressive (IS) regimens showed a probable role in preventing acute rejection related to ICI, including the use of a single ICI rather than double ICI, concomitant use of glucocorticoids (GC), converting tacrolimus to mTor inhibitors (m-TorI) and avoid close sequencing of ICI agents. Furthermore, low dose prednisone (LDP) before CAR-T infusion in patients with stable allograft kidney function could favor the regulatory T cells (T-regs), actively regulating alloimmune responses, and maintaining self-tolerance of the renal transplant. Further prospective trials will be needed to examine the long-term effect of these regimens in renal transplant recipients undergoing CAR-T or receiving ICI as curative therapies for their refractory cancers.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Delong Liu

Abstract New advances in the design and manufacture of monoclonal antibodies, bispecific T cell engagers, and antibody-drug conjugates make the antibody-directed agents more powerful with less toxicities. Small molecule inhibitors are routinely used now as oral targeted agents for multiple cancers. The discoveries of PD1 and PD-L1 as negative immune checkpoints for T cells have led to the revolution of modern cancer immunotherapy. Multiple agents targeting PD1, PD-L1, or CTLA-4 are widely applied as immune checkpoint inhibitors (ICIs) which alleviate the suppression of immune regulatory machineries and lead to immunoablation of once highly refractory cancers such as stage IV lung cancer. Tisagenlecleucel and axicabtagene ciloleucel are the two approved CD19-targeted chimeric antigen receptor (CAR) T cell products. Several CAR-T cell platforms targeting B cell maturation antigen (BCMA) are under active clinical trials for refractory and/or relapsed multiple myeloma. Still more targets such as CLL-1, EGFR, NKG2D and mesothelin are being directed in CAR-T cell trials for leukemia and solid tumors. Increasing numbers of novel agents are being studied to target cancer-intrinsic oncogenic pathways as well as immune checkpoints. One such an example is targeting CD47 on macrophages which represents a “do-not-eat-me” immune checkpoint. Fueling the current excitement of cancer medicine includes also TCR- T cells, TCR-like antibodies, cancer vaccines and oncolytic viruses.


Author(s):  
Demis N. Lipe ◽  
Eva Rajha ◽  
Adriana H. Wechsler ◽  
Susan Gaeta ◽  
Nicolas L. Palaskas ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. e001460 ◽  
Author(s):  
Xiuting Liu ◽  
Graham D Hogg ◽  
David G DeNardo

The clinical success of immune checkpoint inhibitors has highlighted the central role of the immune system in cancer control. Immune checkpoint inhibitors can reinvigorate anti-cancer immunity and are now the standard of care in a number of malignancies. However, research on immune checkpoint blockade has largely been framed with the central dogma that checkpoint therapies intrinsically target the T cell, triggering the tumoricidal potential of the adaptive immune system. Although T cells undoubtedly remain a critical piece of the story, mounting evidence, reviewed herein, indicates that much of the efficacy of checkpoint therapies may be attributable to the innate immune system. Emerging research suggests that T cell-directed checkpoint antibodies such as anti-programmed cell death protein-1 (PD-1) or programmed death-ligand-1 (PD-L1) can impact innate immunity by both direct and indirect pathways, which may ultimately shape clinical efficacy. However, the mechanisms and impacts of these activities have yet to be fully elucidated, and checkpoint therapies have potentially beneficial and detrimental effects on innate antitumor immunity. Further research into the role of innate subsets during checkpoint blockade may be critical for developing combination therapies to help overcome checkpoint resistance. The potential of checkpoint therapies to amplify innate antitumor immunity represents a promising new field that can be translated into innovative immunotherapies for patients fighting refractory malignancies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yiping Zou ◽  
Zhihong Chen ◽  
Hongwei Han ◽  
Shiye Ruan ◽  
Liang Jin ◽  
...  

Background: Hepatocellular carcinoma (HCC) is the most common histological type of liver cancer, with an unsatisfactory long-term survival rate. Despite immune checkpoint inhibitors for HCC have got glories in recent clinical trials, the relatively low response rate is still a thorny problem. Therefore, there is an urgent need to screen biomarkers of HCC to predict the prognosis and efficacy of immunotherapy.Methods: Gene expression profiles of HCC were retrieved from TCGA, GEO, and ICGC databases while the immune-related genes (IRGs) were retrieved from the ImmPort database. CIBERSORT and WGCNA algorithms were combined to identify the gene module most related to CD8+ T cells in the GEO cohort. Subsequently, the genes in hub modules were subjected to univariate, LASSO, and multivariate Cox regression analyses in the TCGA cohort to develop a risk signature. Afterward, the accuracy of the risk signature was validated by the ICGC cohort, and its relationships with CD8+ T cell infiltration and PDL1 expression were explored.Results: Nine IRGs were finally incorporated into a risk signature. Patients in the high-risk group had a poorer prognosis than those in the low-risk group. Confirmed by TCGA and ICGC cohorts, the risk signature possessed a relatively high accuracy. Additionally, the risk signature was demonstrated as an independent prognostic factor and closely related to the CD8+ T cell infiltration and PDL1 expression.Conclusion: A risk signature was constructed to predict the prognosis of HCC patients and detect patients who may have a higher positive response rate to immune checkpoint inhibitors.


2018 ◽  
Vol 227 (4) ◽  
pp. e56
Author(s):  
Takayoshi Yamauchi ◽  
Toshifumi Hoki ◽  
Hongbin Chen ◽  
Saby George ◽  
Grace Dy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document