scholarly journals Comparative Study of Secreted Proteins, Enzymatic Activities of Wood Degradation and Stilbene Metabolization in Grapevine Botryosphaeria Dieback Fungi

2021 ◽  
Vol 7 (7) ◽  
pp. 568
Author(s):  
Clément Labois ◽  
Elodie Stempien ◽  
Justine Schneider ◽  
Christine Schaeffer-Reiss ◽  
Christophe Bertsch ◽  
...  

Botryosphaeriaceae fungi are plant pathogens associated with Botryosphaeria dieback. To better understand the virulence factors of these fungi, we investigated the diversity of secreted proteins and extracellular enzyme activities involved in wood degradation and stilbene metabolization in Neofusicoccum parvum and Diplodia seriata, which are two major fungi associated with grapevine B. dieback. Regarding the analysis of proteins secreted by the two fungi, our study revealed that N. parvum, known to be more aggressive than D. seriata, was characterized by a higher quantity and diversity of secreted proteins, especially hydrolases and oxidoreductases that are likely involved in cell wall and lignin degradation. In addition, when fungi were grown with wood powder, the extracellular laccase and Mn peroxidase enzyme activities were significantly higher in D. seriata compared to N.parvum. Importantly, our work also showed that secreted Botryosphaeriaceae proteins produced after grapevine wood addition are able to rapidly metabolize the grapevine stilbenes. Overall, a higher diversity of resveratrol and piceatannol metabolization products was found with enzymes of N. parvum compared to D. seriata. This study emphasizes the diversity of secreted virulence factors found in B. dieback fungi and suggests that some resveratrol oligomers produced in grapevine wood after pathogen attack could be formed via pathogenic fungal oxidases.

2021 ◽  
Vol 87 (3) ◽  
pp. 127-136
Author(s):  
Zoë E. Dubrow ◽  
Adam J. Bogdanove

AbstractXanthomonas campestris pv. campestris, the causal agent of black rot of crucifers, was one of the first bacterial plant pathogens ever identified. Over 130 years later, black rot remains a threat to cabbage, cauliflower, and other Brassica crops around the world. Recent genomic and genetic data are informing our understanding of X. campestris taxonomy, dissemination, inoculum sources, and virulence factors. This new knowledge promises to positively impact resistance breeding of Brassica varieties and management of inoculum sources.


2007 ◽  
Vol 57 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Massimiliano Fenice ◽  
Anna Maria Gallo ◽  
Belen Juarez-Jimenez ◽  
Jesus Gonzalez-Lopez

1998 ◽  
Vol 188 (10) ◽  
pp. 1907-1916 ◽  
Author(s):  
Akio Abe ◽  
Ursula Heczko ◽  
Richard G. Hegele ◽  
B. Brett Finlay

Enteropathogenic Escherichia coli (EPEC) belongs to a family of related bacterial pathogens, including enterohemorrhagic Escherichia coli (EHEC) O157:H7 and other human and animal diarrheagenic pathogens that form attaching and effacing (A/E) lesions on host epithelial surfaces. Bacterial secreted Esp proteins and a type III secretion system are conserved among these pathogens and trigger host cell signal transduction pathways and cytoskeletal rearrangements, and mediate intimate bacterial adherence to epithelial cell surfaces in vitro. However, their role in pathogenesis is still unclear. To investigate the role of Esp proteins in disease, mutations in espA and espB were constructed in rabbit EPEC serotype O103 and infection characteristics were compared to that of the wild-type strain using histology, scanning and transmission electron microscopy, and confocal laser scanning microscopy in a weaned rabbit infection model. The virulence of EspA and EspB mutant strains was severely attenuated. Additionally, neither mutant strain formed A/E lesions, nor did either one cause cytoskeletal actin rearrangements beneath the attached bacteria in the rabbit intestine. Collectively, this study shows for the first time that the type III secreted proteins EspA and EspB are needed to form A/E lesions in vivo and are indeed virulence factors. It also confirms the role of A/E lesions in disease processes.


Microbiology ◽  
1998 ◽  
Vol 144 (2) ◽  
pp. 577-587 ◽  
Author(s):  
C. Raynaud ◽  
G. Etienne ◽  
P. Peyron ◽  
M.-A. Laneelle ◽  
M. Daffe

Mycobiology ◽  
2008 ◽  
Vol 36 (1) ◽  
pp. 74 ◽  
Author(s):  
Hyuk Woo Kwon ◽  
In Joung Back ◽  
Han Gyu Ko ◽  
Chang Hyun You ◽  
Seong Hwan Kim

2013 ◽  
Vol 10 (1) ◽  
pp. 567-582 ◽  
Author(s):  
S. Endres ◽  
J. Unger ◽  
N. Wannicke ◽  
M. Nausch ◽  
M. Voss ◽  
...  

Abstract. The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena have a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, they are able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters, including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days under aeration with low (180 μatm), medium (380 μatm), and high (780 μatm) CO2 concentrations. Obtained pCO2 levels in the treatments were on median 315, 353, and 548 μatm CO2, respectively. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment–related effects were identified for cyanobacterial growth, which in turn influenced the concentration of mucinous substances and the recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment. In total, significantly more mucinous substances accumulated in the high pCO2 treatment, reaching 363 μg Xeq L−1 compared to 269 μg Xeq L−1 in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. We hypothesise from our results that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.


2019 ◽  
Vol 114 (2) ◽  
pp. 125-138 ◽  
Author(s):  
Fuhong Miao ◽  
Yuan Li ◽  
Song Cui ◽  
Sindhu Jagadamma ◽  
Guofeng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document