scholarly journals Multiple Security Certification System between Blockchain Based Terminal and Internet of Things Device: Implication for Open Innovation

Author(s):  
Bong-Gyeol Choi ◽  
EuiSeob Jeong ◽  
Sang-Woo Kim

As the number of Internet of Things (IoT) devices increases, services expand and illegal hacking and infringement methods become more sophisticated, an effective solution for blockchain technology is required as a fundamental solution to security threats. In this paper, we develop the security module of an IoT device based on blockchain technology that blocks hacking and information infringement and forms a multi-security blockchain system between the IoT device and the user device and we develop a user application. We contribute to addressing the security threats faced by IoT application services by developing a new method. In particular, we present some schemes for the development of a multi-security certification system based on blockchain for IoT security.

Author(s):  
K. Dinesh Kumar ◽  
Venkata Rathnam T. ◽  
Venkata Ramana R. ◽  
M. Sudhakara ◽  
Ravi Kumar Poluru

Internet of things (IoT) technology plays a vital role in the current technologies because IoT develops a network by integrating different kinds of objects and sensors to create the communication among objects directly without human interaction. With the presence of internet of things technology in our daily comes smart thinking and various advantages. At the same time, secure systems have been a most important concern for the protection of information systems and networks. However, adopting traditional security management systems in the internet of things leads several issues due to the limited privacy and policies like privacy standards, protocol stacks, and authentication rules. Usually, IoT devices has limited network capacities, storage, and computing processors. So they are having more chances to attacks. Data security, privacy, and reliability are three main challenges in the IoT security domain. To address the solutions for the above issues, IoT technology has to provide advanced privacy and policies in this large incoming data source. Blockchain is one of the trending technologies in the privacy management to provide the security. So this chapter is focused on the blockchain technologies which can be able to solve several IoT security issues. This review mainly focused on the state-of-the-art IoT security issues and vulnerabilities by existing review works in the IoT security domains. The taxonomy is presented about security issues in the view of communication, architecture, and applications. Also presented are the challenges of IoT security management systems. The main aim of this chapter is to describe the importance of blockchain technology in IoT security systems. Finally, it highlights the future directions of blockchain technology roles in IoT systems, which can be helpful for further improvements.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mazen El-Masri ◽  
Eiman Mutwali Abdelmageed Hussain

PurposeBlockchain is evolving to become a platform for securing Internet of things (IoT) ecosystems. Still, challenges remain. The purpose of this literature review is to highlight the applicability of blockchain as a medium to secure IoT ecosystems. A two-dimensional framework anchored on (1) IoT layers and (2) security goals is used to organize the existent IoT security threats and their corresponding countermeasures identified in the reviewed literature. The framework helped in mapping the IoT security threats with the inherent features of blockchain and accentuate their prominence to IoT security.Design/methodology/approachAn approach integrating computerized natural language processing (NLP) with a systematic literature review methodology was adopted. A large corpus of 2,303 titles and abstracts of blockchain articles was programmatically analyzed in order to identify the relevant literature. The identified literature was subjected to a systematic review guided by a well-established method in IS research.FindingsThe literature evidently highlights the prominence of blockchain as a mean to IoT security due to the distinctive features it encompasses. The authors’ investigation revealed that numerous existent threats are better addressed with blockchain than conventional mechanisms. Nevertheless, blockchain consumes resources such as electricity, time, bandwidth and disk space at a rate that is not yet easily accessible to common IoT ecosystems.Research limitations/implicationsResults suggest that a configurational approach that aligns IoT security requirements with the resource requirements of different blockchain features is necessary in order to realize the proper balance between security, efficiency and feasibility.Practical implicationsPractitioners can make use of the classified lists of convention security mechanisms and the IoT threats they address. The framework can help underline the countermeasures that best achieve their security goals. Practitioners can also use the framework to identify the most important features to seek for in a blockchain technology that can help them achieve their security goals.Originality/valueThis study proposes a novel framework that can help classify IoT threats based on the IoT layer impacted and the security goal at risk. Moreover, it applies a combined man-machine approach to systematically analyze the literature.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 752 ◽  
Author(s):  
Ye-Jin Choi ◽  
Hee-Jung Kang ◽  
Il-Gu Lee

The Internet of things (IoT) technology, which is currently considered the new growth engine of the fourth industrial revolution, affects our daily life and has been applied to various industrial fields. Studies on overcoming the limitations of scalability and stability in a centralized IoT operating environment by employing distributed blockchain technology have been actively conducted. However, the nature of IoT that ensures connectivity with multiple objects at any time and any place increases security threats. Further, it extends the influence of the cyber world into the physical domain, resulting in serious damage to human life and property. Therefore, we aim to study a method to increase the security of IoT devices and effectively extend them simultaneously. To this end, we analyze the authentication methods and limitations of traditional IoT devices and examine cases for improving IoT environments by using blockchain technology. Accordingly, we propose a framework that allows IoT devices to be securely connected and extended to other devices by automatically evaluating security using blockchain technology and the whitelist. The method proposed in this paper restricts the extension of devices vulnerable to security risks by imposing penalties and allows only devices with high security to be securely and quickly authenticated and extended without user intervention. In this study, we applied the proposed method to IoT network simulation environments and observed that the number of devices vulnerable to security was reduced by 48.5% compared with traditional IoT environments.


Author(s):  
R. Priyadharsini

Blockchain is the technology that provides security through its cryptography. IOT (Internet of Things) enhances the usage of software and hardware power in efficient way. The IOT Devices can be configured and controlled by blockchain. In this, the analysis of blockchain in IOT Security presented. The Key management is one of the biggest features for blockchain to be successful in the technology. As security is essential for any technology to be successful, the importance is considered and revealed about the security of IOT through blockchain technology. The features and considerations made would be useful for further research on blockchain in IOT Security.


Author(s):  
Shen Xin En ◽  
Liu Si Ling ◽  
Fan Cheng Hao

In recent years, due to their frequent use and widespread use, IoT (Internet of Things) devices have become an attractive target for hackers. As a result of their limited network resources and complex operating systems, they are vulnerable to attacks. Using a honeypot can, therefore, be a very effective way of detecting malicious requests and capturing samples of exploits. The purpose of this article is to introduce honeypots, the rise of IoT devices, and how they can be exploited by attackers. Various honeypot ecosystems will be investigated further for capturing and analyzing information from attacks against these IoT devices. As well as how to leverage proactive strategies in terms of IoT security, it will provide insights on the attack vectors present in most IoT systems, along with understanding attack patterns.


Author(s):  
Aman Tyagi

Elderly population in the Asian countries is increasing at a very fast rate. Lack of healthcare resources and infrastructure in many countries makes the task of provding proper healthcare difficult. Internet of things (IoT) in healthcare can address the problem effectively. Patient care is possible at home using IoT devices. IoT devices are used to collect different types of data. Various algorithms may be used to analyse data. IoT devices are connected to the internet and all the data of the patients with various health reports are available online and hence security issues arise. IoT sensors, IoT communication technologies, IoT gadgets, components of IoT, IoT layers, cloud and fog computing, benefits of IoT, IoT-based algorithms, IoT security issues, and IoT challenges are discussed in the chapter. Nowadays global epidemic COVID19 has demolished the economy and health services of all the countries worldwide. Usefulness of IoT in COVID19-related issues is explained here.


Author(s):  
Mamata Rath ◽  
Bibudhendu Pati

Adoption of Internet of Things (IoT) and Cloud of Things (CoT) in the current developing technology era are expected to be more and more invasive, making them important mechanism of the future Internet-based communication systems. Cloud of Things and Internet of Things (IoT) are two emerging as well as diversified advanced domains that are diversified in current technological scenario. Paradigm where Cloud and IoT are merged together is foreseen as disruptive and as an enabler of a large number of application scenarios. Due to the adoption of the Cloud and IoT paradigm a number of applications are gaining important technical attention. In the future, it is going to be more complicated a setup to handle security in technology. Information till now will severely get changed and it will be very tough to keep up with varying technology. Organisations will have to repeatedly switch over to new skill-based technology with respect to higher expenditure. Latest tools, methods and enough expertise are highly essential to control threats and vulnerability to computing systems. Keeping in view the integration of Cloud computing and IoT in the new domain of Cloud of things, the said article provides an up-to-date eminence of Cloud-based IoT applications and Cloud of Things with a focus on their security and application-oriented challenges. These challenges are then synthesized in detail to present a technical survey on various issues related to IoT security, concerns, adopted mechanisms and their positive security assurance using Cloud of Things.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4121 ◽  
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit various shortcomings. For example, they lack secure default configurations and sufficient security configurability. They also lack rich behavioural descriptions, failing to list provided and required services. To answer this problem, we envision a future where IoT devices carry behavioural contracts and Fog nodes store network policies. One requirement is that contract consistency must be easy to prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices. Following our previous work, first we formally define the pillars of our proposal. Then, by means of a running case study, we show that we can model communication flows and prevent information leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can also prevent unexpected chains of events.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2985 ◽  
Author(s):  
Wencheng Yang ◽  
Song Wang ◽  
Jiankun Hu ◽  
Ahmed Ibrahim ◽  
Guanglou Zheng ◽  
...  

Remote user authentication for Internet of Things (IoT) devices is critical to IoT security, as it helps prevent unauthorized access to IoT networks. Biometrics is an appealing authentication technique due to its advantages over traditional password-based authentication. However, the protection of biometric data itself is also important, as original biometric data cannot be replaced or reissued if compromised. In this paper, we propose a cancelable iris- and steganography-based user authentication system to provide user authentication and secure the original iris data. Most of the existing cancelable iris biometric systems need a user-specific key to guide feature transformation, e.g., permutation or random projection, which is also known as key-dependent transformation. One issue associated with key-dependent transformations is that if the user-specific key is compromised, some useful information can be leaked and exploited by adversaries to restore the original iris feature data. To mitigate this risk, the proposed scheme enhances system security by integrating an effective information-hiding technique—steganography. By concealing the user-specific key, the threat of key exposure-related attacks, e.g., attacks via record multiplicity, can be defused, thus heightening the overall system security and complementing the protection offered by cancelable biometric techniques.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2148 ◽  
Author(s):  
Mookyu Park ◽  
Haengrok Oh ◽  
Kyungho Lee

Internet-of-Things (IoT) is a technology that is extensively being used in various fields. Companies like Samsung, LG, and Apple are launching home appliances that use IoT as a part of their smart home business. Currently, Intelligent Things which combine artificial intelligence (AI) and IoT are being developed. Most of these devices are configured to collect and respond to human behavior (motion, voice, etc.) through built-in sensors. If IoT devices do not ensure high security, personal information could be leaked. This paper describes the IoT security threats that can cause information leakage from a hierarchical viewpoint of cyberspace. In addition, because these smart home-based IoT devices are closely related to human life, considering social damage is a problem. To overcome this, we propose a framework to measure the risk of IoT devices based on security scenarios that can occur in a smart home.


Sign in / Sign up

Export Citation Format

Share Document