scholarly journals Effects of Urbanization on Landscape Patterns in the Middle Reaches of the Yangtze River Region

Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1025
Author(s):  
Yang Yi ◽  
Chen Zhang ◽  
Guilian Zhang ◽  
Luqi Xing ◽  
Qicheng Zhong ◽  
...  

The middle reaches of the Yangtze River region (MRYRR) are China’s first trans-regional urban agglomeration, located in the center of the Yangtze River Economic Belt. The MRYRR is an important ecological reserve, and its land cover changes are affected by both socio-economic development and geographical environment. In this paper, Landsat ETM/TM/OLI remote sensing images were used to monitor land use and landscape patterns from 1990 to 2015. Through supervised classification, land use transfer matrix, landscape pattern metrics and correlation analysis, the spatial-temporal patterns of land use change and its relationship with socio-economic in the study area were revealed. The results showed that: (1) the main land use types in the study area were cropland (CL) and forestland (FL), accounting for more than three-quarters of the study area. During the study period, built-up land (BL) increased, CL decreased, FL increased first and then decreased; (2) the BL expanded mainly by occupying CL and FL, and regional landscape pattern was gradually fragmented, with complex patch shape and increasing diversity and heterogeneity. Among them, the BL is gradually gathered, and the FL and CL are gradually fragmented; (3) in the past 25 years, the urbanization process in this region has been obvious, and the Gross Domestic Product (GDP) has increased by 36 times. The socioeconomic variables were positively correlated with BL, orchard (OL) and Shannon diversity index (SHID), and negatively correlated with CL, Wasteland (WL), mean patch size (MPS) and contagion size (CONTAG). The results showed that the urbanization development has a great impact on the region, and the ecological protection task is still challenging. It is necessary to protect high-quality cropland and draw a red line for ecological protection. We should strengthen the construction of ecological corridors and ecological nodes to adapt to regional sustainable development.

Author(s):  
Luwen Liu ◽  
Xingrong Chen ◽  
Wanxu Chen ◽  
Xinyue Ye

Clarifying the impact mechanisms of landscape patterns on ecosystem services is highly important for effective ecosystem protection, policymaking, and landscape planning. However, previous literature lacks knowledge about the impact mechanisms of landscape patterns on ecosystem services from a spatial perspective. Thus, this study measured landscape patterns and the ecosystem services value (ESV) using a series of landscape pattern metrics and an improved benefit transfer method based on land-use data from 2015. It explores the impact mechanisms of the landscape pattern metrics on the ESV using the ordinary least-squares method and spatial regression models in the middle reaches of the Yangtze River Urban Agglomerations (MRYRUA), China. We found that forestland was the main landscape type in the MRYRUA, followed by cultivated land, and the fragmentation degree of cultivated land was significantly higher than that of forestland. The findings demonstrate that landscape pattern metrics had a significant impact on ecosystem services, but could vary greatly. Moreover, ecosystem services in the MRYRUA exhibited significant spatial spillover effects and cross-regional collaborative governance was an effective means of landscape planning. This paper acts as a scientific reference and effective guidance for landscape planning and regional ecosystem conservation in MRYRUA and other similarly fast-growing urban agglomerations.


Author(s):  
Yang Yi ◽  
Mingchang Shi ◽  
Chunjiang Liu ◽  
Hongzhang Kang ◽  
Bin Wang

The landscape patterns of plantations (PT) are the results of human disturbances on local vegetation, and in turn, differ greatly from natural forests (NF), since the patterns strongly influence the natural circulation of material and energy. There is a need to understand the differences of landscape patterns between PT and NF, to establish a near natural afforestation strategy. This study chose three typical silvicultural counties in the middle reaches of the Yangtze River as the research areas and compared the landscape patterns of NF and PT, with other land use types (grassland, GL; cropland, CL; shrubland, SL; orchard, OR; built-up land, BUL; bare land, BL; and water bodies, WB). The results revealed that the areas of PT accounted for 7.67%, 12.05%, and 18.97% of three counties, bigger than GL, OC, BUL, BL, and WB, as one of main land use types. The landscape patterns of PT (mean patch size between 2.06 to 6.05 ha) were more fragmented than NF (mean patch size between 5.83 to 53.91 ha). NF areas increased along the relative altitude gradient, from 0 to 2500 m, while PT areas peaked from 100–1000 m. The higher the altitude, the more typical the zonal distribution of PT, the more aggregated the NF. NF had significant negative correlations with BL, BUL, CL, PT, GL, and OC, which suggest that human activities had seriously interfered with NF. Although PT as an ecological protection strategy was increasing, the landscape patterns of PT were obviously different from NF. This may affect the material energy flow in the ecological environment. The results in the present study have great implications in the other regions in China and the relevant parts of the world where natural forests were heavily disturbed.


2021 ◽  
Vol 13 (22) ◽  
pp. 12735
Author(s):  
Feng Yin ◽  
Ting Zhou ◽  
Xinli Ke

Ecological security is important both for maintaining the function of an ecosystem and for providing ecosystem services to the human wellbeing. The impact of land use change/cover on ecological security has attracted considerable attention, whereas the role of cropland reclamation remains unclear. The indirect loss of ecological land that occurs upon the request of cropland requisition-compensation policies offer further changes to ecological security. In order to ascertain the impact of cropland reclamation on ecological security, in this study three scenarios are established, addressing cropland returning to ecological lands without a slope limitation, with a slope <25°, and with a reclaimed cropland slope ≥25°. This study was conducted in the Yangtze River economic belt (YREB) due to its important contribution to ecological security in China. Land uses in different scenarios in 2030 are projected using the land use simulation model LANDSCAPE. Accordingly, ecological security in each scenario was evaluated using the contribution–vigour–organization–resilience framework, comprising the variables carbon storage, water purification, water yield, habitat quality, net primary productivity, mean patch area, Shannon’s diversity index, largest patch index and contagion, as well as the normalized difference vegetation index. The results indicate that about 62% of YREB land is projected to remain stable in terms of ecological security, while about 21% will deteriorate and 17% will improve between 2015–2030. Land where ecological security is projected to improve is concentrated in areas where broad and connected croplands are distributed. The fact that a higher proportion of areas will deteriorate than improve suggests that the negative impact of cropland change on ecological security should not be ignored. Comparing different scenarios, croplands returning to ecological lands pose a particularly significant impact on ecological security, particularly in the upper reaches of the YREB, where steep croplands are concentrated.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 804
Author(s):  
Bo Niu ◽  
Dazhuan Ge ◽  
Rui Yan ◽  
Yingyi Ma ◽  
Dongqi Sun ◽  
...  

In recent years, the impact of land-use systems on global climate change has become increasingly significant, and land-use change has become a hot issue of concern to academics, both within China and abroad. Urbanization, as an important socioeconomic factor, plays a vital role in promoting land-use transition, which also shows a significant spatial dependence on urbanization. This paper constructs a theoretical framework for the interaction relationship between urbanization and land-use transition, taking the Yangtze River Delta as an example, and measures the level of urbanization from the perspective of population urbanization, economic urbanization and social urbanization, while also evaluating the level of land-use morphologies from the perspective of dominant and recessive morphologies of land-use. We construct a PVAR model and coupled coordination model based on the calculated indexes for empirical analysis. The results show that the relationship between urbanization and land-use transition is not a simple linear relationship, but tends to be complex with the process of urbanization, and reasonable urbanization and land-use morphologies will promote further benign coupling in the system. By analyzing the interaction relationship between urbanization and land-use transition, this study enriches the study of land-use change and provides new pathways for thinking about how to promote high-quality urbanization.


2021 ◽  
Vol 13 (13) ◽  
pp. 2551
Author(s):  
Wanxu Chen ◽  
Jie Zeng ◽  
Yumei Chu ◽  
Jiale Liang

In recent decades, substantial changes have occurred in the spatial structure and form of landscapes in metropolises; these have greatly impacted ecosystem provision capacities. Clarifying the impact mechanism of landscape patterns on ecosystem services can provide insights into regional ecological conservation and sustainable development measures. Although previous studies have explored the impacts of landscape patterns on ecosystem services at multiple scales, few studies have been conducted using the buffer gradient analysis approach. Using land-use/cover change data, this study measured the evolution of spatiotemporal features of landscape patterns and ecosystem services value (ESV) with 1, 2, and 3 km buffer-zone scales in Wuhan, China. Econometric models were then used to analyze the impacts of landscape patterns on ecosystem services at different buffer-zone scales. The results demonstrated that rapid urbanization in Wuhan has led to significant changes in landscape patterns, and the landscape pattern metrics exhibited significant spatial heterogeneity. The ESV in Wuhan exhibited a steady decline during the study period. Hydrological regulations and waste treatment functions contributed to the largest proportion of ESV, and raw material production functions contributed to the lowest proportion. Landscape pattern metrics exerted a significant influence on ESV; however, this influence varied greatly. The results of this study provide a new understanding of the influence mechanism of landscape patterns on ecosystem services at 1, 2, and 3 km buffer-zone scales. These findings are critical for facilitating landscape planning and regional sustainable development.


2018 ◽  
Vol 10 (11) ◽  
pp. 4287 ◽  
Author(s):  
Yantao Xi ◽  
Nguyen Thinh ◽  
Cheng Li

Rapid urbanization has dramatically spurred economic development since the 1980s, especially in China, but has had negative impacts on natural resources since it is an irreversible process. Thus, timely monitoring and quantitative analysis of the changes in land use over time and identification of landscape pattern variation related to growth modes in different periods are essential. This study aimed to inspect spatiotemporal characteristics of landscape pattern responses to land use changes in Xuzhou, China durfing the period of 1985–2015. In this context, we propose a new spectral index, called the Normalized Difference Enhanced Urban Index (NDEUI), which combines Nighttime light from the Defense Meteorological Satellite Program/Operational Linescan System with annual maximum Enhanced Vegetation Index to reduce the detection confusion between urban areas and barren land. The NDEUI-assisted random forests algorithm was implemented to obtain the land use/land cover maps of Xuzhou in 1985, 1995, 2005, and 2015, respectively. Four different periods (1985–1995, 1995–2005, 2005–2015, and 1985–2015) were chosen for the change analysis of land use and landscape patterns. The results indicate that the urban area has increased by about 30.65%, 10.54%, 68.77%, and 143.75% during the four periods at the main expense of agricultural land, respectively. The spatial trend maps revealed that continuous transition from other land use types into urban land has occurred in a dual-core development mode throughout the urbanization process. We quantified the patch complexity, aggregation, connectivity, and diversity of the landscape, employing a number of landscape metrics to represent the changes in landscape patterns at both the class and landscape levels. The results show that with respect to the four aspects of landscape patterns, there were considerable differences among the four years, mainly owing to the increasing dominance of urbanized land. Spatiotemporal variation in landscape patterns was examined based on 900 × 900 m sub-grids. Combined with the land use changes and spatiotemporal variations in landscape patterns, urban growth mainly occurred in a leapfrog mode along both sides of the roads during the period of 1985 to 1995, and then shifted into edge-expansion mode during the period of 1995 to 2005, and the edge-expansion and leapfrog modes coexisted in the period from 2005 to 2015. The high value spatiotemporal information generated using remote sensing and geographic information system in this study could assist urban planners and policymakers to better understand urban dynamics and evaluate their spatiotemporal and environmental impacts at the local level to enable sustainable urban planning in the future.


Sign in / Sign up

Export Citation Format

Share Document