scholarly journals Modeling of the 1783 Tsunami Event in Scilla Generated by Landslide

Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Francesca Minniti ◽  
Giuseppe Barbaro ◽  
Giandomenico Foti

In 1783, an event that has gone down in history as the great seismic crisis in Calabria began, during which two major earthquakes occurred, affecting the Calabrian ridge from the Strait to the north. Between 6 and 7 February in Scilla a tsunami occurred that caused the greatest number of victims in Italy: 1500 people. The mechanism that triggered the tsunami was the detachment of a ridge of rock due to a violent earthquake that affected the area; this detachment caused a subaerial landslide which, by sliding, then deposited the rock on the seabed a few kilometers from the coast, immediately generating the tsunami event. The objective of this study is to perform numerical simulations for tsunami events that occurred in history and use models that perform the propagation of a tsunami, using the best possible bathymetric and topographic data and the historical data to compare the validity of the results. In this way, one can obtain the validation of a model that can be used to simulate possible events of this magnitude on the Calabrian coasts and therefore be able to develop a reliable early warning tsunami system; it also has the advantage of perfectly combining computational burdens and the validity of results.

2007 ◽  
Vol 29 (3) ◽  
pp. 415-426
Author(s):  
Pham Van Ninh ◽  
Phan Ngoc Vinh ◽  
Nguyen Manh Hung ◽  
Dinh Van Manh

Overall the evolution process of the Red River Delta based on the maps and historical data resulted in a fact that before the 20th century all the Nam Dinh coastline was attributed to accumulation. Then started the erosion process at Xuan Thuydistrict and from the period of 1935 - 1965 the most severe erosion was contributed in the stretch from Ha Lan to Hai Trieu, 1965 - 1990 in Hai Chinh - Hai Hoa, 1990 - 2005 in the middle part of Hai Chinh - Hai Thinh (Hai Hau district). The adjoining stretches were suffered from not severe erosion. At the same time, the Ba Lat mouth is advanced to the sea and to the North and South direction by the time with a very high rate.The first task of the mathematical modeling of coastal line evolution of Hai Hau is to evaluate this important historical marked periods e. g. to model the coastal line at the periods before 1900, 1935 - 1965; 1965 - 1990; 1990 - 2005. The tasks is very complicated and time and working labors consuming.In the paper, the primarily results of the above mentioned simulations (as waves, currents, sediments transports and bottom - coastal lines evolution) has been shown. Based on the obtained results, there is a strong correlation between the protrusion magnitude and the southward moving of the erosion areas.


2018 ◽  
Author(s):  
Olga Makarieva ◽  
Andrey Shikhov ◽  
Nataliia Nesterova ◽  
Andrey Ostashov

Abstract. Detailed spatial geodatabase of aufeis in the Indigirka River, the basin area 305 000 km2, Russia was compiled from the Cadaster of aufeis of the North-East of the USSR published in 1958, topographic maps and Landsat images for 2013–2017. The aufeis area share varies from 0.26 to 1.15 % in different river sub-basins within the studied area. Digitized Cadaster (1958) contains the coordinates and characteristics of 897 aufeises with total area of 2064 km2. The Landsat-based identification of aufeises for 2013–2017 allowed the description of 1213 aufeises on a total area of 128 km2. The combined digital database of the aufeis is available at https://doi.pangaea.de/10.1594/PANGAEA.891036. The satellite-derived total area of aufeis is 1.6 times less than in the Cadaster (1958). At the same time, more than 600 aufeis identified by Landsat images analyses are missing in the Cadaster (1958). It implies that the aufeis formation conditions may have been changed between the mid-20th century and the present. About 60 % of total area presents 10 % of the largest aufeis. Most aufeis are located in the elevation band of 1100–1300 m. The interannual variability of the aufeis area was estimated by the example of the Bolshaya Momskaya naled (aufeis) and the group of large aufeis in the basin of the Syuryuktyakh River for the period of 2001–2016. The results of analysis indicate a tendency towards a decrease in the area of the Bolshaya Momskaya naled in recent years, at the same time the reduction in the aufeis area in the basin of the Syuryuktyakh River has not occurred.


2021 ◽  
Vol 233 ◽  
pp. 03035
Author(s):  
Zhuzhu Yu ◽  
Zhiguo He ◽  
Li Li ◽  
Taoyan Ye ◽  
Yuezhang Xia

Based on FVCOM hydrodynamic numerical model and coastline topographic data in 2013, a three-dimensional numerical model of fine sediment transport in Hangzhou Bay has been established to explore the water and sediment exchange mechanism between Hangzhou Bay and the open sea at different typical sections. The results of validation with measured and satellite retrieved data show that the model can well simulate the process of water and sediment movement in Hangzhou Bay. Compared with the calculation results of the coastline topographic data of Hangzhou Bay in 1974 and 2020, the influence mechanism of shoreline change on the water and sediment exchange mechanism between Hangzhou Bay and the open sea has been studied. The results show that the sediment transport inside and outside the Hangzhou Bay is generally in the pattern of north-inflow and south-discharge. Compared with the coastline in 1974, the sediment transport from Yangshan port in the north of Hangzhou Bay and Zhoushan Islands in the middle of Hangzhou Bay increases when the coastline is pushed into the bay in 2020, while the outward sediment transport from Jintang Channel in the South decreases. The overall trend features that the sediment transport into the bay increases, with the bay mouth silting. In the three sections extending from Hangzhou Bay to the open sea, the inflowing water and sediment of the horizontal section on the north side is decreasing, while the discharged sediment from the south side and the inflowing water and discharged sediment from the vertical section at the east side are increasing.


2010 ◽  
Vol 10 (12) ◽  
pp. 2659-2675 ◽  
Author(s):  
J. Birkmann ◽  
K. v. Teichman ◽  
T. Welle ◽  
M. González ◽  
M. Olabarrieta

Abstract. The development of appropriate risk and vulnerability reduction strategies to cope with tsunami risks is a major challenge for countries, regions, and cities exposed to potential tsunamis. European coastal cities such as Cadiz are exposed to tsunami risks. However, most official risk reduction strategies as well as the local population are not aware of the probability of such a phenomenon and the potential threat that tsunami waves could pose to their littoral. This paper outlines how tsunami risks, and particularly tsunami vulnerability, could be assessed and measured. To achieve this, a vulnerability assessment framework was applied focusing on the city of Cadiz as a case study in order to highlight the practical use and the challenges and gaps such an assessment has to deal with. The findings yield important information that could assist with the systematic improvement of societal response capacities of cities and their inhabitants to potential tsunami risks. Hazard and vulnerability maps were developed, and qualitative data was obtained through, for example, focused group discussions. These maps and surveys are essential for the development of a people-centred early warning and response system. Therefore, in this regard, the Tsunami Early Warning and Mitigation System in the North Eastern Atlantic, the Mediterranean, and connected seas promoted by the UNESCO-Intergovernmental Oceanographic Commission (IOC) should encompass these assessments to ensure that action is particularly intensified and fostered by those potentially exposed. That means that besides the necessary technical infrastructure for tsunami detection, additional response and adaptation measures need to be promoted – particularly those that reduce the vulnerability of people and regions exposed – in terms of national systems. In addition, it is important to develop emergency preparedness and awareness plans in order to create an integrated regional Tsunami Early Warning System (TEWS) by 2011. The findings of the paper are based on research conducted within the framework of the EC funded project TRANSFER: "Tsunami Risk ANd Strategies For the European Region", a project that aims to improve the understanding of tsunami processes in the Euro-Mediterranean region, to develop methods and tools to assess vulnerability and risk, and to identify strategies for the reduction of tsunami risks.


2014 ◽  
Vol 14 (6) ◽  
pp. 1407-1415 ◽  
Author(s):  
E. M. Bitner-Gregersen ◽  
L. Fernandez ◽  
J. M. Lefèvre ◽  
J. Monbaliu ◽  
A. Toffoli

Abstract. A coupling of a spectral wave model with a nonlinear phase-resolving model is used to reconstruct the evolution of wave statistics during a storm crossing the North Sea on 8–9 November 2007. During this storm a rogue wave (named the Andrea wave) was recorded at the Ekofisk field. The wave has characteristics comparable to the well-known New Year wave measured by Statoil at the Draupner platform 1 January 1995. Hindcast data of the storm at the nearest grid point to the Ekofisk field are here applied as input to calculate the evolution of random realizations of the sea surface and its statistical properties. Numerical simulations are carried out using the Euler equations with a higher-order spectral method (HOSM). Results are compared with some characteristics of the Andrea wave record measured by the down-looking lasers at Ekofisk.


2013 ◽  
Vol 397-400 ◽  
pp. 2435-2438
Author(s):  
Xiu Ping Yang ◽  
Er Chao Li

Based on fuzzy inference and gray neural network, indexes of early-warning system of carrying capacity in scenic spots is established and extract fuzzy rules based on historical data, simulate the early-warning system based on fuzzy inference, gray forecasting model is built for single feature index respectively, add a compensated error based on neural network. The prediction value equals to the output value of grey neural network model plus the compensated error signal. At last, takes Laolongtou scenic area as an example.


2018 ◽  
Vol 57 (2) ◽  
pp. 255-272 ◽  
Author(s):  
Fanglin Sun ◽  
Yaoming Ma ◽  
Zeyong Hu ◽  
Maoshan Li ◽  
Gianni Tartari ◽  
...  

AbstractThe seasonal variability of strong afternoon winds in a northern Himalayan valley and their relationship with the synoptic circulation were examined using in situ meteorological data from March 2006 to February 2007 and numerical simulations. Meteorological observations were focused on the lower Rongbuk valley, on the north side of the Himalayas (4270 m MSL), where a wind profile radar was available. In the monsoon season (21 May–4 October), the strong afternoon wind was southeasterly, whereas it was southwesterly in the nonmonsoon season. Numerical simulations were performed using the Weather Research and Forecasting Model to investigate the mechanism causing these afternoon strong winds. The study found that during the nonmonsoon season the strong winds are produced by downward momentum transport from the westerly winds aloft, whereas those during the monsoon season are driven by the inflow into the Arun Valley east of Mount Everest. The air in the Arun Valley was found to be colder than that of the surroundings during the daytime, and there was a horizontal pressure gradient from the Arun Valley to Qomolangma Station (QOMS), China Academy of Sciences, at the 5200-m level. This explains the formation of the strong afternoon southeasterly wind over QOMS in the monsoon season. In the nonmonsoon season, the colder air from Arun Valley is confined below the ridge by westerly winds associated with the subtropical jet.


2014 ◽  
Vol 44 (5) ◽  
pp. 1269-1284 ◽  
Author(s):  
T. Radko ◽  
A. Bulters ◽  
J. D. Flanagan ◽  
J.-M. Campin

Abstract Three-dimensional dynamics of thermohaline staircases are investigated using a series of basin-scale staircase-resolving numerical simulations. The computational domain and forcing fields are chosen to reflect the size and structure of the North Atlantic subtropical thermocline. Salt-finger transport is parameterized using the flux-gradient formulation based on a suite of recent direct numerical simulations. Analysis of the spontaneous generation of thermohaline staircases suggests that thermohaline layering is a product of the gamma instability, associated with the variation of the flux ratio with the density ratio . After their formation, numerical staircases undergo a series of merging events, which systematically increase the size of layers. Ultimately, the system evolves into a steady equilibrium state with pronounced layers 20–50 m thick. The size of the region occupied by thermohaline staircases is controlled by the competition between turbulent mixing and double diffusion. Assuming, in accordance with observations, that staircases form when the density ratio is less than the critical value of , the authors arrive at an indirect estimate of the characteristic turbulent diffusivity in the subtropical thermocline.


2020 ◽  
Author(s):  
Tamara Breuninger ◽  
Moritz Gamperl ◽  
Kurosch Thuro

<p>The project Inform@Risk, a collaboration of German and Colombian Universities and Institutes funded by the German government, aims to install a landslide early warning system in the informal settlements in Medellín, Colombia. In the recent past the city has suffered from multiple landslides, some of them with up to 500 casualties. The informal settlements in the steep slopes at the city borders grow rapidly, which destabilizes the ground and complicates the installation and operation of an early warning system. Therefore, key goal of the project is to include the community in the process of the development of the early warning system.</p><p>Medellín is embedded in the Aburrá Valley in the Cordillera Central of the Andes. The region around the city consists of different triassic and cretaceous metamorphic rocks and magmatic batholites and plutonites. Especially the north-eastern slope is prone to landslides, as it is very steep and made up of a deep cover of soil over highly weathered dunite rock.</p><p>During the first field trip, carried out in August 2019, former landslide areas were located, and ERT-measurements were conducted at the study site Bello Oriente in the northeast of Medellín. After a first evaluation of the findings, the soil cover seems to be over 50 m high in the middle of the slope, which indicates a deep-seated landslide, that might have been moving downhill very slowly for thousands of years. The more dangerous landslides however, which are much faster, are the shallow ones on the surface. These landslides can appear on top of each other and are distributed across the whole study area but are most concentrated between and above the last houses of the barrio. During a second field campaign in 2020, the ERT-profiles will be calibrated and complemented by drillings and the hazard map will be completed accordingly.</p>


Sign in / Sign up

Export Citation Format

Share Document