scholarly journals Double-Diffusive Recipes. Part I: Large-Scale Dynamics of Thermohaline Staircases

2014 ◽  
Vol 44 (5) ◽  
pp. 1269-1284 ◽  
Author(s):  
T. Radko ◽  
A. Bulters ◽  
J. D. Flanagan ◽  
J.-M. Campin

Abstract Three-dimensional dynamics of thermohaline staircases are investigated using a series of basin-scale staircase-resolving numerical simulations. The computational domain and forcing fields are chosen to reflect the size and structure of the North Atlantic subtropical thermocline. Salt-finger transport is parameterized using the flux-gradient formulation based on a suite of recent direct numerical simulations. Analysis of the spontaneous generation of thermohaline staircases suggests that thermohaline layering is a product of the gamma instability, associated with the variation of the flux ratio with the density ratio . After their formation, numerical staircases undergo a series of merging events, which systematically increase the size of layers. Ultimately, the system evolves into a steady equilibrium state with pronounced layers 20–50 m thick. The size of the region occupied by thermohaline staircases is controlled by the competition between turbulent mixing and double diffusion. Assuming, in accordance with observations, that staircases form when the density ratio is less than the critical value of , the authors arrive at an indirect estimate of the characteristic turbulent diffusivity in the subtropical thermocline.

2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


2019 ◽  
Vol 629 ◽  
pp. A102 ◽  
Author(s):  
S. Duarte Puertas ◽  
J. Iglesias-Páramo ◽  
J. M. Vilchez ◽  
L. Drissen ◽  
C. Kehrig ◽  
...  

Stephan’s Quintet (SQ), the prototypical compact group of galaxies in the local Universe, has been observed with the imaging Fourier transform spectrometer SITELLE, attached to the Canada-France-Hawaii-Telescope, to perform a deep search for intergalactic star-forming emission. In this paper we present the extended ionised gaseous structures detected and analyse their kinematical properties. The large field of view (11′ × 11′) and the spectral ranges of SITELLE have allowed a thorough study of the entire galaxy system, its interaction history and the main properties of the ionised gas. The observations have revealed complex three-dimensional strands in SQ seen for the first time, as well as the spatially resolved velocity field for a new SQ dwarf galaxy (M 82-like) and the detailed spectral map of NGC 7320c, confirming its AGN nature. A total of 175 SQ Hα emission regions have been found, 22 of which present line profiles with at least two kinematical components. We studied 12 zones and 28 sub-zones in the SQ system in order to define plausible physical spatial connections between its different parts in the light of the kinematical information gathered. In this respect we have found five velocity systems in SQ: (i) v = [5600−5900] km s−1 associated with the new intruder and the southern debris region; (ii) v = [5900−6100] km s−1, associated with the north starburst A and south starburst A and the strands connected to these zones; (iii) v = [6100−6600] km s−1, associated with the strands from the large-scale shock region (LSSR); (iv) v = [6600−6800] km s−1, associated with the young tidal tail, the starburst A (SQA), NGC 7319, and the NGC 7319 north lobe; and (v) v = [6800−7000] km s−1, associated with the strands seen connecting LSSR with SQA. We fail to detect ionised gas emission in the old tail, neither in the vicinity of NGC 7318A nor in NGC 7317, and the connection between NGC 7319 north lobe and SQA cannot be confirmed. Conversely, a clear gaseous bridge has been confirmed both spatially and kinematically between the LSSR zone and the NGC 7319 AGN nucleus. Finally, a larger scale, outer rim winding the NGC 7318B/A system clockwise north-west to south-east has been highlighted in continuum and in Hα. This structure may be reminiscent of a sequence of a previously proposed scenario for SQ a sequence of individual interactions.


1987 ◽  
Vol 178 ◽  
pp. 195-219 ◽  
Author(s):  
Douglas G. Dommermuth ◽  
Dick K. P. Yue

A numerical method is developed for nonlinear three-dimensional but axisymmetric free-surface problems using a mixed Eulerian-Lagrangian scheme under the assumption of potential flow. Taking advantage of axisymmetry, Rankine ring sources are used in a Green's theorem boundary-integral formulation to solve the field equation; and the free surface is then updated in time following Lagrangian points. A special treatment of the free surface and body intersection points is generalized to this case which avoids the difficulties associated with the singularity there. To allow for long-time simulations, the nonlinear computational domain is matched to a transient linear wavefield outside. When the matching boundary is placed at a suitable distance (depending on wave amplitude), numerical simulations can, in principle, be continued indefinitely in time. Based on a simple stability argument, a regriding algorithm similar to that of Fink & Soh (1974) for vortex sheets is generalized to free-surface flows, which removes the instabilities experienced by earlier investigators and eliminates the need for artificial smoothing. The resulting scheme is very robust and stable.For illustration, three computational examples are presented: (i) the growth and collapse of a vapour cavity near the free surface; (ii) the heaving of a floating vertical cylinder starting from rest; and (iii) the heaving of an inverted vertical cone. For the cavity problem, there is excellent agreement with available experiments. For the wave-body interaction calculations, we are able to obtain and analyse steady-state (limit-cycle) results for the force and flow field in the vicinity of the body.


2005 ◽  
Vol 13 ◽  
pp. 113-116
Author(s):  
K. Kusano

AbstractGeneration and annihilation processes of magnetic helicity in solar coronal active regions are investigated based on the observations and the simulations. We first examined the reliability of the numerical techniques, which enable to measure the magnetic helicity flux through the photosphere based on the magnetogram data. Secondly, in terms of the new technique, we found that magnetic helicities of the both signs are simultaneously injected into active regions. Motivated by this result, finally, we investigated the nonlinear process of the magnetic helicity annihilation, using the three-dimensional numerical simulations. The simulations clearly indicated that the helicity reversal can cause the eruption of large-scale plasmoid through the nonlinear process of the resistive instability growing on the helicity inversion layer. From these studies, we point out that the annihilation of magnetic helicity is a key process for the onset mechanism of solar flares.


1994 ◽  
Vol 116 (3) ◽  
pp. 358-368 ◽  
Author(s):  
J. H. Leylek ◽  
R. D. Zerkle

Large-scale computational analyses have been conducted and results compared with experiments to understand coolant jet and crossflow interaction in discrete-jet film cooling. Detailed three-dimensional elliptic Navier–Stokes solutions, with high-order turbuence modeling, are presented for film cooling using a new model enabling simultaneous solution of fully coupled flow in plenum, film-hole, and cross-stream regions. Computations are carried out for the following range of film cooling parameters typically found in gas turbine airfoil applications: single row of jets with a film-hole length-to-diameter ratio of 1.75 and 3.5; blowing ratio from 0.5 up to 2; coolant-to-crossflow density ratio of 2; streamwise injection angle of 35 deg; and pitch-to-diameter ratio of 3. Comparison of computational solutions with experimental data give good agreement. Moreover, the current results complement experiments and support previous interpretations of measured data and flow visualization. The results also explain important aspects of film cooling, such as the development of complex flow within the film-hole in addition to the well-known counterrotating vortex structure in the cross-stream.


2020 ◽  
Author(s):  
Tina Georg ◽  
Maria C. Neves ◽  
Paulo Relvas ◽  
Kate Malmgren

<p><span>Sea surface temperature differences between coastal and offshore waters and Ekman transport inferred from the wind velocity have been used to construct upwelling indices. Those indices have been widely used in climatological studies. In the present research we look to the upper layer structure of the ocean, down to 500 m depth, to infer relations between climate and the upwelling regimes. In particular, we explore the links between climate variability and the three-dimensional spatial structure of the upwelling activity along the Canary Current Upwelling System (CCUS) sector limited to 25-35° N, where upwelling is permanent, but intensified during the summer. The vertical structure of the CCUS is studied using vertical profiles of temperature, salinity, density and spiciness from the World Ocean Atlas (WOA). Monthly grids are retrieved for the past 30 years and vertical profiles exported at selected locations. The aim is to identify inter-annual and seasonal changes in the thermocline and the mix layer depth and link them to the upwelling characteristics. We then relate periods of strong upwelling with large-scale modes of climate variability, namely the North Atlantic Oscillation (NAO) and Eastern Atlantic pattern (EA). Time series of winter composites of NAO and EA are separated into positive and negative phases and their signatures quantified through composites of SST, salinity and density. The results provide the first assessment of inter-annual variability of the Canary upwelling current at both the surface and throughout depth and contributes towards understanding the connection between the vertical ocean structure and the large-scale climate modes. </span><span>The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL.</span></p>


2014 ◽  
Vol 27 (11) ◽  
pp. 3889-3903 ◽  
Author(s):  
Satoru Okajima ◽  
Hisashi Nakamura ◽  
Kazuaki Nishii ◽  
Takafumi Miyasaka ◽  
Akira Kuwano-Yoshida

Abstract Sets of atmospheric general circulation model (AGCM) experiments are conducted to assess the importance of prominent positive anomalies in sea surface temperature (SST) observed over the midlatitude North Pacific in forcing a persistent basin-scale anticyclonic circulation anomaly and its downstream influence in 2011 summer and autumn. The anticyclonic anomaly observed in October is well reproduced as a robust response of an AGCM forced only with the warm SST anomaly associated with the poleward-shifted oceanic frontal zone in the midlatitude Pacific. The equivalent barotropic anticyclonic anomaly over the North Pacific is maintained under strong transient eddy feedback forcing associated with the poleward-deflected storm track. As the downstream influence of the anomaly, abnormal warmth and dryness observed over the northern United States and southern Canada in October are also reproduced to some extent. The corresponding AGCM response over the North Pacific to the tropical SST anomalies is similar but substantially weaker and less robust, suggesting the primary importance of the prominent midlatitude SST anomaly in forcing the large-scale atmospheric anomalies observed in October 2011. In contrast, the model reproduction of the atmospheric anomalies observed in summer was unsuccessful. This appears to arise from the fact that, unlike in October, the midlatitude SST anomalies accompanied reduction of heat and moisture release from the ocean, indicative of the atmospheric thermodynamic forcing on the SST anomalies. Furthermore, the distinct seasonality in the AGCM responses to the warm SST anomalies may also be contributed to by the seasonality of background westerlies and storm track.


2020 ◽  
Vol 33 (13) ◽  
pp. 5673-5695 ◽  
Author(s):  
Huang-Hsiung Hsu ◽  
Ying-Ting Chen

AbstractTorrential rainfall occurring along the North American northeast coast (NANC) in summer and autumn is accompanied by strong atmospheric rivers (ARs), which efficiently transport abundant moisture along a narrow-stretched path associated with a low pressure system. In this study, an autodetection method was used to identify ARs that reached the NANC, based on the 6-hourly data of the ERA-Interim reanalysis conducted by the European Centre for Medium-Range Weather Forecasts, in summer and autumn from 1979 to 2016. Stronger ARs tended to occur in the eastern flank of a cyclonic anomaly that covered the entire North American east coast from Florida to Newfoundland, with a positive precipitation anomaly over the NANC. The cyclonic anomalies and precipitation in autumn were stronger but less frequent than those in summer. Cyclonic anomalies were parts of westward-tilting wavelike circulation perturbations moving into North America from the extratropical North Pacific and moving continuously eastward, reaching the east coast in approximately five days. The Geophysical Fluid Dynamics Laboratory (GFDL) High-Resolution Atmospheric Model (HiRAM), which realistically simulates the occurrence frequency and key characteristics of ARs in current climatic conditions, was used to project the AR activity and corresponding circulations in the future warmer climate under the representative concentration pathway 8.5 scenario. The HiRAM that was driven by sea surface temperature changes projected an overall increase in the occurrence of stronger ARs in both summer and autumn and the precipitation strength in autumn along the NANC by the end of the twenty-first century. This projected enhancement was contributed to by two processes—a smaller contribution was from the weakened basin-scale North Atlantic anticyclone but with higher moisture content, and a larger contribution was from the enhancement in anomalous circulation during AR events with integrated vapor transport exceeding the 75th percentile. These results suggest that the influence of strong ARs on the NANC may increase in the warmer future due to the combination of increased water vapor in the large-scale environment (thermodynamic effect) and enhanced anomalous circulations (dynamic effect). The AR-associated circulations in autumn were also projected to have a stronger tropical connection in the warmer future.


2017 ◽  
Vol 47 (12) ◽  
pp. 2887-2906 ◽  
Author(s):  
Raffaele Ferrari ◽  
Louis-Philippe Nadeau ◽  
David P. Marshall ◽  
Lesley C. Allison ◽  
Helen L. Johnson

AbstractZonally averaged models of the ocean overturning circulation miss important zonal exchanges of waters between the Atlantic and Indo-Pacific Oceans. A two-layer, two-basin model that accounts for these exchanges is introduced and suggests that in the present-day climate the overturning circulation is best described as the combination of three circulations: an adiabatic overturning circulation in the Atlantic Ocean associated with transformation of intermediate to deep waters in the north, a diabatic overturning circulation in the Indo-Pacific Ocean associated with transformation of abyssal to deep waters by mixing, and an interbasin circulation that exchanges waters geostrophically between the two oceans through the Southern Ocean. These results are supported both by theoretical analysis of the two-layer, two-basin model and by numerical simulations of a three-dimensional ocean model.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3826
Author(s):  
Myriam Slama ◽  
Camille Choma Bex ◽  
Grégory Pinon ◽  
Michael Togneri ◽  
Iestyn Evans

This study investigates the wake interaction of four full-scale three-bladed tidal turbines with different ambient turbulence conditions, in straight and yawed flows. A three-dimensional unsteady Lagrangian Vortex Blob software is used for the numerical simulations of the turbines’ wakes. In order to model the ambient turbulence in the Lagrangian Vortex Method formalism, a Synthetic Eddy Method is used. With this method, turbulent structures are added in the computational domain to generate a velocity field which statistically reproduces any ambient turbulence intensity and integral length scale. The influence of the size of the structures and their density (within the study volume) on the wake of a single turbine is studied. Good agreement is obtained between numerical and experimental results for a high turbulence intensity but too many structures can increase the numerical dissipation and reduce the wake extension. Numerical simulations of the four turbine array with the layout initially proposed for the NEPTHYD pilot farm are then presented. Two ambient turbulence intensities encountered in the Alderney Race and two integral length scales are tested with a straight flow. Finally, the wakes obtained for yawed flows with different angles are presented, highlighting turbine interactions.


Sign in / Sign up

Export Citation Format

Share Document