scholarly journals Dynamin Inhibitors Prevent the Establishment of the Cytomegalovirus Assembly Compartment in the Early Phase of Infection

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 876
Author(s):  
Igor Štimac ◽  
Natalia Jug Vučko ◽  
Gordana Blagojević Zagorac ◽  
Marina Marcelić ◽  
Hana Mahmutefendić Lučin ◽  
...  

Cytomegalovirus (CMV) infection initiates massive rearrangement of cytoplasmic organelles to generate assembly compartment (AC). The earliest events, the establishment of the preAC, are initiated in the early phase as an extensive reorganization of early endosomes (EEs), endosomal recycling compartment (ERC), trans-Golgi network (TGN), and the Golgi. Here, we demonstrate that dynamin inhibitors (Dynasore, Dyngo-4a, MiTMAB, and Dynole-34-2) block the establishment of the preAC in murine CMV (MCMV) infected cells. In this study, we extensively analyzed the effect of Dynasore on the Golgi reorganization sequence into the outer preAC. We also monitored the development of the inner preAC using a set of markers that define EEs (Rab5, Vps34, EEA1, and Hrs), the EE-ERC interface (Rab10), the ERC (Rab11, Arf6), three layers of the Golgi (GRASP65, GM130, Golgin97), and late endosomes (Lamp1). Dynasore inhibited the pericentriolar accumulation of all markers that display EE-ERC-TGN interface in the inner preAC and prevented Golgi unlinking and dislocation to the outer preAC. Furthermore, in pulse-chase experiments, we demonstrated that the presence of dynasore only during the early phase of MCMV infection (4–14 hpi) is sufficient to prevent not only AC formation but also the synthesis of late-phase proteins and virion production. Therefore, our results indicate that dynamin-2 acts as a part of the machinery required for AC generation and rearrangement of EE/ERC/Golgi membranes in the early phase of CMV infection.

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 859
Author(s):  
Marina Marcelić ◽  
Hana Mahmutefendić Lučin ◽  
Antonija Jurak Begonja ◽  
Gordana Blagojević Zagorac ◽  
Vanda Juranić Lisnić ◽  
...  

Murine cytomegalovirus (MCMV) initiates the stepwise establishment of the pre-assembly compartment (pre-AC) in the early phase of infection by the expansion of the early endosome (EE)/endosomal recycling compartment (ERC) interface and relocation of the Golgi complex. We depleted Vps34-derived phosphatidylinositol-3-phosphate (PI(3)P) at EEs by VPS34-IN1 and inhibited PI(3)P-associated functions by overexpression of 2xFYVE- and p40PX PI(3)P-binding modules to assess the role of PI(3)P-dependent EE domains in the pre-AC biogenesis. We monitored the accumulation of Rab10 and Evectin-2 in the inner pre-AC and the relocation of GM130-positive cis-Golgi organelles to the outer pre-AC by confocal microscopy. Although PI(3)P- and Vps34-positive endosomes build a substantial part of pre-AC, the PI(3)P depletion and the inhibition of PI(3)P-associated functions did not prevent the establishment of infection and progression through the early phase. The PI(3)P depletion in uninfected and MCMV-infected cells rapidly dispersed PI(3)P-bond proteins and reorganized EEs, including ablation of EE-to-ERC transport and relocation of Rab11 endosomes. The PI(3)P depletion one hour before pre-AC initiation and overexpression of 2xFYVE and p40PX domains neither prevented Rab10- and Evectin-2 accumulation, nor Golgi unlinking and relocation. These data demonstrate that PI(3)P-dependent functions, including the Rab11-dependent EE-to-ERC route, are dispensable for pre-AC initiation. Nevertheless, the virus growth was drastically reduced in PI(3)P-depleted cells, indicating that PI(3)P-associated functions are essential for the late phase of infection.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 867
Author(s):  
Valentino Pavišić ◽  
Hana Mahmutefendić Mahmutefendić Lučin ◽  
Gordana Blagojević Blagojević Zagorac ◽  
Pero Lučin

Shortly after entering the cells, cytomegaloviruses (CMVs) initiate massive reorganization of cellular endocytic and secretory pathways, which results in the forming of the cytoplasmic virion assembly compartment (AC). We have previously shown that the formation of AC in murine CMV- (MCMV) infected cells begins in the early phase of infection (at 4–6 hpi) with the pre-AC establishment. Pre-AC comprises membranes derived from the endosomal recycling compartment, early endosomes, and the trans-Golgi network, which is surrounded by fragmented Golgi cisterns. To explore the importance of Arf GTPases in the biogenesis of the pre-AC, we infected Balb 3T3 cells with MCMV and analyzed the expression and intracellular localization of Arf proteins in the early phases (up to 16 hpi) of infection and the development of pre-AC in cells with a knockdown of Arf protein expression by small interfering RNAs (siRNAs). Herein, we show that even in the early phase, MCMVs cause massive reorganization of the Arf system of the host cells and induce the over-recruitment of Arf proteins onto the membranes of pre-AC. Knockdown of Arf1, Arf3, Arf4, or Arf6 impaired the establishment of pre-AC. However, the knockdown of Arf1 and Arf6 also abolished the establishment of infection. Our study demonstrates that Arf GTPases are required for different steps of early cytomegalovirus infection, including the establishment of the pre-AC.


2001 ◽  
Vol 75 (4) ◽  
pp. 1958-1967 ◽  
Author(s):  
Päivi Joki-Korpela ◽  
Varpu Marjomäki ◽  
Camilla Krogerus ◽  
Jyrki Heino ◽  
Timo Hyypiä

ABSTRACT Human parechovirus 1 (HPEV-1) is a prototype member of parechoviruses, a recently established picornavirus genus. Although there is preliminary evidence that HPEV-1 recognizes αVintegrins as cellular receptors, our understanding of early events during HPEV-1 infection is still very limited. The aim of this study was to clarify the entry mechanisms of HPEV-1, including the attachment of the virus onto the host cell surface and subsequent internalization. In blocking experiments with monoclonal antibodies against different receptor candidates, antibodies against αV and β3 integrin subunits, in particular in combination, appeared to be the most efficient ones in preventing the HPEV-1 infection. To find out whether HPEV-1 uses clathrin-coated vesicles or other routes for the entry into the host cell, we carried out double-labeling experiments of virus-infected cells with anti-HPEV-1 antibodies and antibodies against known markers of the clathrin and the caveolin routes. At the early phase of infection (5 min postinfection [p.i.]) HPEV-1 colocalized with EEA1 (early endosomes), and later, after 30 min p.i., it colocalized with mannose-6-phosphate receptor (late endosomes), whereas no colocalization with caveolin-1 was observed. The data indicate that HPEV-1 utilizes the clathrin-dependent endocytic pathway for entry into the host cells. Interestingly, endocytosed HPEV-1 capsid proteins were observed in the endoplasmic reticulum and cis-Golgi network 30 to 60 min p.i. Depolymerization of microtubules with nocodazole inhibited translocation of the virus to the late endosomes but did not block HPEV-1 replication, suggesting that the RNA genome may be released early during the entry process.


1992 ◽  
Vol 103 (4) ◽  
pp. 1139-1152
Author(s):  
J.W. Kok ◽  
K. Hoekstra ◽  
S. Eskelinen ◽  
D. Hoekstra

Recycling pathways of the sphingolipid glucosylceramide were studied by employing a fluorescent analog of glucosylceramide, 6(-)[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoylglucosyl sphingosine (C6-NBD-glucosylceramide). Direct recycling of the glycolipid from early endosomes to the plasma membrane occurs, as could be shown after treating the cells with the microtubule-disrupting agent nocodazole, which causes inhibition of the glycolipid's trafficking from peripheral early endosomes to centrally located late endosomes. When the microtubuli are intact, at least part of the glucosylceramide is transported from early to late endosomes together with ricin. Interestingly, also N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a membrane marker of the fluid-phase endocytic pathway, is transported to this endosomal compartment. However, in contrast to both ricin and N-Rh-PE, the glucosylceramide can escape from this organelle and recycle to the plasma membrane. Monensin and brefeldin A have little effect on this recycling pathway, which would exclude extensive involvement of early Golgi compartments in recycling. Hence, the small fraction of the glycolipid that colocalizes with transferrin (Tf) in the Golgi area might directly recycle via the trans-Golgi network. When the intracellular pH was lowered to 5.5, recycling was drastically reduced, in accordance with the impeding effect of low intracellular pH on vesicular transport during endocytosis and in the biosynthetic pathway. Our results thus demonstrate the existence of at least two recycling pathways for glucosylceramide and indicate the relevance of early endosomes in recycling of both proteins and lipids.


2000 ◽  
Vol 11 (10) ◽  
pp. 3289-3298 ◽  
Author(s):  
Wolfram Antonin ◽  
Claudia Holroyd ◽  
Ritva Tikkanen ◽  
Stefan Höning ◽  
Reinhard Jahn

Endobrevin/VAMP-8 is an R-SNARE localized to endosomes, but it is unknown in which intracellular fusion step it operates. Using subcellular fractionation and quantitative immunogold electron microscopy, we found that endobrevin/VAMP-8 is present on all membranes known to communicate with early endosomes, including the plasma membrane, clathrin-coated pits, late endosomes, and membranes of thetrans-Golgi network. Affinity-purified antibodies that block the ability of endobrevin/VAMP-8 to form SNARE core complexes potently inhibit homotypic fusion of both early and late endosomes in vitro. Fab fragments were as active as intact immunoglobulin Gs. Recombinant endobrevin/VAMP-8 inhibited both fusion reactions with similar potency. We conclude that endobrevin/VAMP-8 operates as an R-SNARE in the homotypic fusion of early and late endosomes.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Makoto Nagano ◽  
Junko Y. Toshima ◽  
Daria Elisabeth Siekhaus ◽  
Jiro Toshima

AbstractEarly endosomes, also called sorting endosomes, are known to mature into late endosomes via the Rab5-mediated endolysosomal trafficking pathway. Thus, early endosome existence is thought to be maintained by the continual fusion of transport vesicles from the plasma membrane and the trans-Golgi network (TGN). Here we show instead that endocytosis is dispensable and post-Golgi vesicle transport is crucial for the formation of endosomes and the subsequent endolysosomal traffic regulated by yeast Rab5 Vps21p. Fittingly, all three proteins required for endosomal nucleotide exchange on Vps21p are first recruited to the TGN before transport to the endosome, namely the GEF Vps9p and the epsin-related adaptors Ent3/5p. The TGN recruitment of these components is distinctly controlled, with Vps9p appearing to require the Arf1p GTPase, and the Rab11s, Ypt31p/32p. These results provide a different view of endosome formation and identify the TGN as a critical location for regulating progress through the endolysosomal trafficking pathway.


Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 126 ◽  
Author(s):  
Cheng Li ◽  
Hongqing Zheng ◽  
Yifan Wang ◽  
Wang Dong ◽  
Yaru Liu ◽  
...  

The proteins IFITM1, IFITM2, and IFITM3 are host effectors against a broad range of RNA viruses whose roles in classical swine fever virus (CSFV) infection had not yet been reported. We investigated the effect of these proteins on CSFV replication in mammalian cells. The proteins were overexpressed and silenced using lentiviruses. Confocal microscopy was used to determine the distribution of these proteins in the cells, and immunofluorescence colocalization analysis was used to evaluate the relationship between IFITMs and the CSFV endosomal pathway, including early endosomes, late endosomes, and lysosomes. IFITM1, IFITM2, or IFITM3 overexpression significantly inhibited CSFV replication, whereas protein knockdown enhanced CSFV replication. In porcine alveolar macrophages (PAMs), IFITM1 was mainly located at the cell surface, whereas IFITM2 and IFITM3 were mainly located in the cytoplasm. Following CSFV infection, the distribution of IFITM1 changed. IFITM1, IFITM2, and IFITM3 colocalization with Lamp1, IFITM2 with Rab5 and Rab7, and IFITM3 with Rab7 were observed in CSFV-infected cells. Collectively, these results provide insights into the possible mechanisms associated with the anti-CSFV action of the IFITM family.


2021 ◽  
Vol 134 (3) ◽  
pp. jcs250670 ◽  
Author(s):  
Anthony Ravussin ◽  
Andreas Brech ◽  
Sharon A. Tooze ◽  
Harald Stenmark

ABSTRACTLate endosomes and lysosomes (endolysosomes) receive proteins and cargo from the secretory, endocytic and autophagic pathways. Although these pathways and the degradative processes of endolysosomes are well characterized, less is understood about protein traffic from these organelles. In this study, we demonstrate the direct involvement of the phosphatidylinositol 3-phosphate (PI3P)-binding SNX4 protein in membrane protein recycling from endolysosomes, and show that SNX4 is required for proper autophagic flux. We show that SNX4 mediates recycling of the lipid scramblase ATG9A, which drives expansion of nascent autophagosome membranes, from endolysosomes to early endosomes, from where ATG9A is recycled to the trans-Golgi network in a retromer-dependent manner. Upon siRNA-mediated depletion of SNX4 or the retromer component VPS35, we observed accumulation of ATG9A on endolysosomes and early endosomes, respectively. Moreover, starvation-induced autophagosome biogenesis and autophagic flux were inhibited when SNX4 was downregulated. We propose that proper ATG9A recycling by SNX4 sustains autophagy by preventing exhaustion of the available ATG9A pool.This article has an associated First Person interview with the first author of the paper.


2020 ◽  
Author(s):  
Anthony Ravussin ◽  
Sharon A. Tooze ◽  
Harald Stenmark

AbstractLate endosomes and lysosomes (endolysosomes) receive proteins and cargo from the secretory, endocytic and autophagic pathways. Whereas these pathways and the degradative processes of endolysosomes are well characterized, less is understood about protein traffic from these organelles. In this study, we demonstrate the direct involvement of the phosphatidylinositol 3-phosphate (PI3P) binding SNX4 protein in membrane protein recycling from endolysosomes, and show that SNX4 is required for proper autophagic flux. We show that SNX4 mediates recycling of the transmembrane autophagy machinery protein ATG9A from endolysosomes to early endosomes, from where ATG9A is recycled to the trans-Golgi network in a retromer-dependent manner. Upon siRNA-mediated depletion of SNX4 or the retromer component VPS35, we observed accumulation of ATG9A on endolysosomes and early endosomes, respectively. Moreover, starvation-induced autophagosome biogenesis and autophagic flux were inhibited when SNX4 was downregulated. Altogether, we propose that proper ATG9A recycling by SNX4 sustains autophagy by preventing exhaustion of the available ATG9A pool.


2006 ◽  
Vol 17 (4) ◽  
pp. 1859-1870 ◽  
Author(s):  
Nicole R. Quenneville ◽  
Tzu-Yuan Chao ◽  
J. Michael McCaffery ◽  
Elizabeth Conibear

Tethering complexes contribute to the specificity of membrane fusion by recognizing organelle features on both donor and acceptor membranes. The Golgi-associated retrograde protein (GARP) complex is required for retrograde traffic from both early and late endosomes to the trans-Golgi network (TGN), presenting a paradox as to how a single complex can interact specifically with vesicles from multiple upstream compartments. We have found that a subunit of the GARP complex, Vps54, can be separated into N- and C-terminal regions that have different functions. Whereas the N-terminus of Vps54 is important for GARP complex assembly and stability, a conserved C-terminal domain mediates localization to an early endocytic compartment. Mutation of this C-terminal domain has no effect on retrograde transport from late endosomes. However, a specific defect in retrieval of Snc1 from early endosomes is observed when recycling from late endosomes to the Golgi is blocked. These data suggest that separate domains recruit tethering complexes to different upstream compartments to regulate individual trafficking pathways.


Sign in / Sign up

Export Citation Format

Share Document