scholarly journals A Multiallelic Molecular Beacon-Based Real-Time RT-PCR Assay for the Detection of SARS-CoV-2

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1146
Author(s):  
Andreas C. Chrysostomou ◽  
Johana Hezka Rodosthenous ◽  
Cicek Topcu ◽  
Christina Papa ◽  
Antonia Aristokleous ◽  
...  

Emerging infectious viruses have led to global advances in the development of specific and sensitive detection techniques. Viruses have an inherent potential to easily mutate, presenting major hurdles for diagnostics and requiring methods capable of detecting genetically diverse viral strains. One such infectious agent is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in December 2019 and has resulted in the global coronavirus disease 2019 (COVID-19) pandemic. This study presents a real-time reverse transcription PCR (RT-PCR) detection assay for SARS-CoV-2, taking into account its intrinsic polymorphic nature that arises due to genetic drift and recombination, as well as the possibility of continuous and multiple introductions of genetically nonidentical strains into the human population. This advance was achieved by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV-2 S, E, M, and N genes. These were applied to create a simple and reproducible real-time RT-PCR assay, which was validated using external quality control panels (QCMD: CVOP20, WHO: SARS-CoV-2-EQAP-01) and clinical samples. This assay was designed for high target detection accuracy and specificity and can also be readily adapted for the detection of other emerging and rapidly mutating pathogens.

2004 ◽  
Vol 50 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Leo L M Poon ◽  
Kwok Hung Chan ◽  
On Kei Wong ◽  
Timothy K W Cheung ◽  
Iris Ng ◽  
...  

Abstract Background: A novel coronavirus (CoV) was recently identified as the agent for severe acute respiratory syndrome (SARS). We compared the abilities of conventional and real-time reverse transcription-PCR (RT-PCR) assays to detect SARS CoV in clinical specimens. Methods: RNA samples isolated from nasopharyngeal aspirate (NPA; n = 170) and stool (n = 44) were reverse-transcribed and tested by our in-house conventional RT-PCR assay. We selected 98 NPA and 37 stool samples collected at different times after the onset of disease and tested them in a real-time quantitative RT-PCR specific for the open reading frame (ORF) 1b region of SARS CoV. Detection rates for the conventional and real-time quantitative RT-PCR assays were compared. To investigate the nature of viral RNA molecules in these clinical samples, we determined copy numbers of ORF 1b and nucleocapsid (N) gene sequences of SARS CoV. Results: The quantitative real-time RT-PCR assay was more sensitive than the conventional RT-PCR assay for detecting SARS CoV in samples collected early in the course of the disease. Real-time assays targeted at the ORF 1b region and the N gene revealed that copy numbers of ORF 1b and N gene sequences in clinical samples were similar. Conclusions: NPA and stool samples can be used for early diagnosis of SARS. The real-time quantitative RT-PCR assay for SARS CoV is potentially useful for early detection of SARS CoV. Our results suggest that genomic RNA is the predominant viral RNA species in clinical samples.


2009 ◽  
Vol 55 (12) ◽  
pp. 1375-1380 ◽  
Author(s):  
Safaa Lamhoujeb ◽  
Hugues Charest ◽  
Ismail Fliss ◽  
Solange Ngazoa ◽  
Julie Jean

To improve the sensitivity and efficiency of the real-time nucleic acid sequence based amplification (NASBA) assay targeting the open reading frame 1–2 (ORF1–ORF2) junction of the norovirus (NoV) genome, a selection of clinical samples were analyzed. The assay results were compared with those of TaqMan and conventional reverse transcription PCR (RT-PCR) and a commercial enzyme-linked immunoassay (ELISA) for the specific detection of GII NoV in 96 fecal samples. Based on end-point dilution, the two real-time assays had similar sensitivities (0.01 particle detectable units), two log10cycles greater than that of conventional RT-PCR. GII NoV was detected in 88.54% of the samples by real-time NASBA, in 86.46% by TaqMan RT-PCR, in 81.25% by conventional RT-PCR, and in 65.7% by ELISA. The two real-time assays were in agreement for 88.5% of the samples. These results demonstrate that real-time NASBA with a molecular beacon probe is highly sensitive, accurate, and specific for NoV detection in clinical samples. Applying this technique to samples with complex matrix and low viral loads, such as food and environmental samples, could be useful for the detection of NoVs and will improve the prevention of NoV outbreaks.


2013 ◽  
Vol 62 (7) ◽  
pp. 1060-1064 ◽  
Author(s):  
Xueyong Huang ◽  
Licheng Liu ◽  
Yanhua Du ◽  
Hongxia Ma ◽  
Yujiao Mu ◽  
...  

A novel bunyavirus associated with fever, thrombocytopenia and leukopenia syndrome (FTLS) was discovered in Henan Province, China. Here, we report the development of an assay for this novel bunyavirus based on real-time reverse transcription PCR (RT-PCR). The assay exhibited high sensitivity and specificity without cross-reactivity towards 13 other viruses that cause similar symptoms. To evaluate the performance of this assay in detecting clinical samples, we analysed 261 serum samples from patients in Henan Province between 2007 and 2010. Of these samples, 91.95 % were bunyavirus positive. Compared with serological assays, the real-time PCR assay was much more sensitive in identifying infected patients 1 to 7 days after the onset of symptoms.


2008 ◽  
Vol 54 (2) ◽  
pp. 406-413 ◽  
Author(s):  
Weston C Hymas ◽  
Wade K Aldous ◽  
Edward W Taggart ◽  
Jeffery B Stevenson ◽  
David R Hillyard

Abstract Background: Enteroviruses are a leading cause of aseptic meningitis in adult and pediatric populations. We describe the development of a real-time RT-PCR assay that amplifies a small target in the 5′ nontranslated region upstream of the classical Rotbart enterovirus amplicon. The assay includes an RNA internal control and incorporates modified nucleotide chemistry. Methods: We evaluated the performance characteristics of this design and performed blinded parallel testing on clinical samples, comparing the results with a commercially available RT-PCR assay (Pan-Enterovirus OligoDetect kit) that uses an enzyme immunoassay–like plate end detection. Results: We tested 778 samples and found 14 discrepant samples between the 2 assays. Of these, the real-time assay detected 6 samples that were negative by the OligoDetect kit, 5 of which were confirmed as positive by sequence analysis using an alternative primer set. Eight discrepant samples were positive by the OligoDetect kit and real-time negative, with 6 confirmed by sequencing. Overall, detection rates of 97% and 96% were obtained for the OligoDetect kit and real-time assays, respectively. Sequence analysis revealed the presence of a number of single nucleotide polymorphisms in the targeted region. The comparative sensitivities of the 2 assays were equivalent, with the limit of detection for the real-time assay determined to be approximately 430 copies per milliliter in cerebrospinal fluid. Conclusions: This novel real-time enterovirus assay is a sensitive and suitable assay for routine clinical testing. The presence of single nucleotide polymorphisms can affect real-time PCR assays.


2011 ◽  
Vol 74 (5) ◽  
pp. 840-843 ◽  
Author(s):  
AYSUN YILMAZ ◽  
KAMIL BOSTAN ◽  
EDA ALTAN ◽  
KARLO MURATOGLU ◽  
NURI TURAN ◽  
...  

Investigation of norovirus (NoV) contamination of food items is important because many outbreaks occur after consumption of contaminated shellfish, vegetables, fruits, and water. The frequency of NoV contamination in food items has not previously been investigated in Turkey. The aim of this study was to investigate the frequency of human NoV genogroups (G) I and II in ready-to-eat tomatoes, parsley, green onion, lettuce, mixed salads, and cracked wheat balls. RNA was extracted with the RNeasy Mini Kit, and a real-time reverse transcription (RT) PCR assay was performed using primers specific for NoV GI and GII. Among the 525 samples analyzed, NoV GII was detected in 1 green onion sample and 1 tomato sample by both SYBR Green and TaqMan real-time RT-PCR assays; no GI virus was detected. The Enterobactericaeae and Escherichia coli levels in the NoV-positive green onion were 6.56 and 1.28 log CFU/g, and those in the tomato were 5.55 and 1.30 log CFU/g, respectively. No significant difference in the bacterial levels was found between the NoV-positive and NoV-negative samples. This study is the first in which NoV GII was found in ready-to-eat food collected from Istanbul, Turkey; thus, these foods may be considered a risk to human health. Epidemiological studies and measures to prevent NoV infection should be considered.


1999 ◽  
Vol 37 (3) ◽  
pp. 524-530 ◽  
Author(s):  
Arno C. Andeweg ◽  
Theo M. Bestebroer ◽  
Martijn Huybreghs ◽  
Tjeerd G. Kimman ◽  
Jan C. de Jong

This paper describes the development and evaluation of a new nested reverse transcription (RT)-PCR for the detection of rhinovirus in clinical samples. The nucleotide sequences of the 5′ noncoding regions of 39 rhinoviruses were determined in order to map the most conserved subregions. We designed a set of rhinovirus-specific primers and probes directed to these subregions and developed a new nested RT-PCR. The new assay includes an optimal RNA extraction method and amplicon identification with probe hybridization to discriminate between rhinoviruses and the closely related enteroviruses. It proved to be highly sensitive and specific. When tested on a dilution series of cultured viruses, the new PCR protocol scored positive at 10- to 100-fold-higher dilutions than a previously used nested RT-PCR. When tested on a collection of clinical samples obtained from 1,070 acute respiratory disease patients who had consulted their general practitioners, the new assay demonstrated a rhinovirus in 24% of the specimens, including all culture-positive samples, whereas the previously used PCR assay or virus culture detected a rhinovirus in only 3.5 to 6% of the samples. This new assay should help determine the disease burden associated with rhinovirus infections.


2019 ◽  
Vol 18 (06) ◽  
pp. 8-13
Author(s):  
Phat X. Dinh

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases to swine industry worldwide. Due to the heterogeneity of field isolates, accurate detection of the PRRS virus is a diagnostic challenge. Recently, co-infection with NA-PRRSV, EU-PRRSV and HP-PRRSV isolates continuously increases in many countries, resulting in a significant impact on PRRSV diagnostics and disease control on farms. To facilitate rapid diagnosis and reliable discrimination of NA-PRRSV, EU-PRRSV and HP-PRRSV, a multiplex RT-PCR assay was established with three pairs of primers targeting highly conservative regions of nsp2 gene with predicted multiplex RT-PCR products of 364 bp, 161 bp and 259 bp, respectively. The primer pairs were optimized to be highly specific for PRRSV genotypes and were able to detect the target gene at the limit of 102 copies/μL for each gene. Clinical samples were used to evaluate this multiplex RT-PCR in parallel with a commercial real-time RT-PCR kit. Results showed over 95.2% (20/21 samples) agreement between the mRT-PCR and the real-time RT-PCR kit. Hence, it indicated that this multiplex RT-PCR could be useful for rapid and deferential diagnosis of NA-PRRSV, EU-PRRSV and HP-PRRSV in swine farms.


2021 ◽  
Author(s):  
Emmanuel Oladipo Babafemi

Abstract Background: COVID-19 has spread globally since its discovery in Hubei province, China in December 2019 and became pandemic in 2020. COVID-19 is a new betacoronavirus and a variant of severe acute respiratory syndrome coronavirus 2 (SARA- CoV-2). Rapid, accurate and reliable diagnosis of COVID-19 will prevent the spread and allow for appropriate management. The main objective of this systematic review is to identify, appraise and summarise the published evidence on the diagnostic performance and effectiveness of SARS-CoV-2 virus in the diagnosis of current or previous COVID-19 using real-time polymerase chain reaction (RT-PCR) assay in low-and middle-income countries (LMICs). Methods: We will search MEDLINE/PubMed, EMBASE, BIOSIS, LILACS, Cochrane Infectious Diseases Group Specialised Register (CIDG SR), Global Health, and CINAHL for published studies for the diagnosis of COVID-19 using real-time polymerase chain reaction assay in LMICs There will be no restriction regarding the language, date of publication, and publication status. We will include retrospective, cross-sectional and cohort observational studies will be included in the review. Selection of studies, data extraction and management, assessment of risk of bias, and quality of evidence will be performed by two independent reviewers (EB and BC). A third researcher (GM) will be consulted in case of discrepancies. Depending on the availability and quality of the data, a meta-analysis will be performed. Otherwise, findings will be qualitatively reported. Discussion: To our knowledge, this is the first systematic review and meta-analysis to assess the uptake of RT-PCR assay for SARS-CoV-2 detection from clinical samples in human in LMICs. This review will make available evidence on the uptake, accuracy, approach, and interpretation of results of this assay in the context of COVID-19 diagnosis which will meet an urgent need, considering the diagnostic challenges of RT-PCR assay for COVID-19 diagnosis in humans. Systematic review registration: PROSPERO CRD42021271894


Author(s):  
Karina Helena Morais Cardozo ◽  
Adriana Lebkuchen ◽  
Guilherme Goncalves Okai ◽  
Rodrigo Andrade Schuch ◽  
Luciana Godoy Viana ◽  
...  

Abstract The current outbreak of severe acute respiratory syndrome associated with coronavirus 2 (SARS-CoV-2) is pressing public health systems around the world, and large population testing is a key step to control this pandemic disease. Real-time reverse-transcription PCR (real-time RT-PCR) is the gold standard test for virus detection but the soaring demand for this test resulted in shortage of reagents and instruments, severely limiting its applicability to large-scale screening. To be used either as an alternative, or as a complement, to real-time RT-PCR testing, we developed a high-throughput targeted proteomics assay to detect SARS-CoV-2 proteins directly from clinical respiratory tract samples. Sample preparation was fully automated by using a modified magnetic particle-based proteomics approach implemented on a robotic liquid handler, enabling a fast processing of samples. The use of turbulent flow chromatography included four times multiplexed on-line sample cleanup and UPLC separation. MS/MS detection of three peptides from SARS-CoV-2 nucleoprotein and a 15N-labeled internal global standard was achieved within 2.5 min, enabling the analysis of more than 500 samples per day. The method was validated using 562 specimens previously analyzed by real-time RT-PCR and was able to detect over 83% of positive cases. No interference was found with samples from common respiratory viruses, including other coronaviruses (NL63, OC43, HKU1, and 229E). The strategy here presented has high sample stability and low cost and should be considered as an option to large population testing.


Sign in / Sign up

Export Citation Format

Share Document