scholarly journals Synthesis and Characterization of Novel Ti3SiC2 Reinforced Ni-Matrix Multilayered Composite-Based Solid Lubricants

Lubricants ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 110 ◽  
Author(s):  
Quan Tran ◽  
Matt Fuka ◽  
Maharshi Dey ◽  
Surojit Gupta

We report the synthesis and characterization of two different types of Ni-based laminated composites (Types I and II). In Type-I composites, layers of Ni and Ti3SiC2 (Ni–Ti3SiC2) were interleaved with Ni, whereas in Type-II composites, Ni–Ti3SiC2 layers were interleaved with Al and Ni. The laminate thickness and Ti3SiC2 content in the individual Ni–Ti3SiC2 layers were systematically varied in both the composites. Detailed SEM studies showed that Ti3SiC2 particulates are well distributed in the Ni-matrix with little or no interfacial reactions with interparticle porosity. However, there were interfacial reactions between Ni and Al in Type II composites. In general, Type I multilayered composites had higher ultimate compressive strength (UCS) in parallel orientation as compared to perpendicular orientation (layers are aligned parallel or perpendicular to the wear surface then it will be referred to as parallel or perpendicular orientation). Comparatively, in Type II composites, the UCS was greater in perpendicular orientation as compared to parallel due to the presence of Al layers as bonding layers. Both the composite designs showed triboactive behavior against alumina disks and sensitivity to laminate thickness and orientation. In Type-I composites, the decrease in µ and wear rate (WR) with laminate thickness was more pronounced in the perpendicular orientation as compared to the parallel orientation. Comparatively, Ni–Ti3SiC2/Al/Ni composites showed that the parallel orientation was more effective in enhancing the triboactive performance. SEM analysis of tribosurfaces showed signs of triboxidation and abrasion, which led to the formation of O-rich tribofilms.

ChemMedChem ◽  
2016 ◽  
Vol 11 (24) ◽  
pp. 2664-2674 ◽  
Author(s):  
Eugen Bethke ◽  
Boris Pinchuk ◽  
Christian Renn ◽  
Lydia Witt ◽  
Joachim Schlosser ◽  
...  

2009 ◽  
Vol 13 (02) ◽  
pp. 223-234 ◽  
Author(s):  
Tomasz Goslinski ◽  
Ewa Tykarska ◽  
Wojciech Szczolko ◽  
Tomasz Osmalek ◽  
Aleksandra Smigielska ◽  
...  

The condensation reaction of 2-amino-3-[(3-pyridylmethyl)amino]-2(Z)-butene-1,4-dinitrile with a series of diketones led to novel dinitriles, of which 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[methyl(3-pyridylmethylene)amino]-2(Z)-butene-1,4-dinitrile, the product of the Paal-Knorr reaction, was successfully utilized in the Linstead macrocyclization towards symmetrical and unsymmetrical porphyrazines. NMR and X-ray study revealed an almost perpendicular orientation of the pyrrolyl groups in relation to the porphyrazine platform. The newly synthesized macrocycles with different peripheral groups show interesting spectroscopic and electrochemical properties. Due to selective sensor/coordination properties they are expected to find applications as chemical sensors and electronic materials.


Author(s):  
Anca EMANDI

A new series of oxovanadium(IV) chelates containing bi-and tridentate pyrazol-5-one azo derivatives ligands of the type (I) [VO(L)2] and (2) [VO(L)(H2O)] have been prepared and characterized by elementary analysis, IR, electronic spectra, conductance measurements, and molecular weights. The ligands coordinate through (O-N) donor system as monobasic and bidentate (HL) for the first type and through (0-N-O) donor system as dibasic and tridentate (H2L) for the second type of complexes. The molecular weights, the presence of the (V=O) stretching band around 950 cm -1, and the visible spectra suggest a monomeric penta-coordinated structure for these complexes.


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1542-1550
Author(s):  
Nagihan Kocaağa ◽  
Öznur Dülger Kutlu ◽  
Ali Erdoğmuş

In this study, the synthesis and characterization of mono-(phthalocyaninato) lutetium(III) (1-Cl and 1-F) [Lu[Formula: see text](AcO)(Pc)] (Pc [Formula: see text] phthalocyaninato, AcO [Formula: see text] acetate) and bis-(phthalocyaninato) lutetium(III) (2-Cl and 2-Br) [Lu[Formula: see text]Pc[Formula: see text]] bearing halogenated (F, Cl and Br) phenoxy–phenoxy groups are described and verified by IR, [Formula: see text]H-NMR, UV-vis and mass spectrometry. Photochemical and photophysical properties of 1-F, 1-Cl 2-Cl and 2-Br in DMSO are also presented. A comparison between photophysical and photochemical parameters of mono and bis derivatives showed that mono phthalocyanines are better photosensitizers than bis phthalocyanines. Photophysical and photochemical properties of phthalocyanines are very useful for photodynamic therapy applications. Singlet oxygen quantum yields [Formula: see text] give an indication of the potential of the complexes as photosensitizers in photodynamic therapy applications. The chloro, fluoro, bromo-phenoxy–phenoxy substituted mono-(phthalocyaninato) lutetium(III) complexes (1-Cl and 1-F) gave good singlet oxygen quantum yields (from 0.86 to 0.80) in DMSO. Thus, these complexes show potential as Type II photosensitizers for PDT of cancer.


1988 ◽  
Vol 34 (10) ◽  
pp. 2053-2057 ◽  
Author(s):  
S Raam ◽  
D M Vrabel

Abstract We present evidence to show that monoclonal antibodies to estrogen receptors (ER) in solid phase recognize the secondary estrogen binding sites with moderate to low affinity for estradiol (E2). An excellent quantitative agreement was found in five cytosols between the ER values obtained by the enzyme immunoassay (ER-EIA) and the amount of secondary estrogen binding sites measured by the assay involving dextran-coated charcoal (Clin Chem 1986;32:1496). The immunoreactive protein recognized by the antibody-coated beads, when allowed to react with ER(+) cytosols, is shown to bind [3H]estradiol only when the ligand concentration exceeds 8 nmol/L. Further biochemical and functional characterization of the immunoreactive protein is required to establish similarities/dissimilarities between this protein, high-affinity Type I ER sites, and the secondary sites such as Type II sites.


2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Rita Klébesz ◽  
Robert Bodnar ◽  
Benedetto Vivo ◽  
Kálmán Török ◽  
Annamaria Lima ◽  
...  

AbstractNodules (coarse-grain “plutonic” rocks) were collected from the ca. 20 ka Pomici di Base (PB)-Sarno eruption of Mt. Somma-Vesuvius, Italy. The nodules are classified as monzonite-monzogabbro based on their modal composition. The nodules have porphyrogranular texture, and consist of An-rich plagioclase, K-feldspar, clinopyroxene (ferroan-diopside), mica (phlogopite-biotite) ± olivine and amphibole. Aggregates of irregular intergrowths of mostly alkali feldspar and plagioclase, along with mica, Fe-Ti-oxides and clinopyroxene, in the nodules are interpreted as crystallized melt pockets.Crystallized silicate melt inclusions (MI) are common in the nodules, especially in clinopyroxenes. Two types of MI have been identified. Type I consists of mica, Fe-Ti-oxides and/or dark green spinel, clinopyroxene, feldspar and a vapor bubble. Volatiles (CO2, H2O) could not be detected in the vapor bubbles by Raman spectroscopy. Type II inclusions are generally lighter in color and contain subhedral feldspar and/or glass and several opaque phases, most of which are confirmed to be oxide minerals by SEM analysis. Some of the opaque-appearing phases that are below the surface may be tiny vapor bubbles. The two types of MI have different chemical compositions. Type I MI are classified as phono-tephrite — tephri-phonolite — basaltic trachy-andesite, while Type II MI have basaltic composition. The petrography and MI geochemistry led us to conclude that the nodules represent samples of the crystal mush zone in the active plumbing system of Mt. Somma-Vesuvius that were entrained into the upwelling magma during the PB-Sarno eruption.


2020 ◽  
Vol 123 (4) ◽  
pp. 587-596
Author(s):  
A. Emanuel ◽  
C.H. Kasanzu ◽  
M. Kagya

Abstract Triassic to mid-Jurassic core samples of the Mandawa basin, southern Tanzania (western coast of the Indian Ocean), were geochemically analyzed in order to constrain source rock potentials and petroleum generation prospects of different stratigraphic formations within the coastal basin complex. The samples were collected from the Mihambia, Mbuo and Nondwa Formations in the basin. Geochemical characterization of source rocks intersected in exploration wells drilled between 503 to 4042 m below surface yielded highly variable organic matter contents (TOC) rated between fair and very good potential source rocks (0.5 to 8.7 wt%; mean ca. 2.3 wt%). Based on bulk geochemical data obtained in this study, the Mandawa source rocks are mainly Type I, Type II, Type III, mixed Types II/III and Type IV kerogens, with a predominance of Type II, Type III and mixed Type II/III. Based on pyrolysis data (Tmax 417 to 473oC; PI = 0.02 to 0.47; highly variable HI = 13 to 1 000 mg/gTOC; OI = 16 to 225 mg/g; and VR values of between 0.24 to 0.95% Ro) we suggest that the Triassic Mbuo Formation and possibly the mid-Jurassic Mihambia Formation have a higher potential for hydrocarbon generation than the Nondwa Formation as they are relatively thermally mature.


Sign in / Sign up

Export Citation Format

Share Document