scholarly journals N,P-Codoped Carbon Layer Coupled with MoP Nanoparticles as an Efficient Electrocatalyst for Hydrogen Evolution Reaction

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1316 ◽  
Author(s):  
Shuai Wang ◽  
Jia Wang ◽  
Ping Li ◽  
Zexing Wu ◽  
Xien Liu

Efficient electrocatalyst plays a significant role on the development of hydrogen energy. In this work, an N,P-codoped carbon layer coupled with MoP nanoparticles (MoP/NPCs) was prepared through a facile high-temperature pyrolysis treatment. The obtained MoP/NPCs presented efficient activity for hydrogen evolution reaction (HER), with low onset potential of 90 mV, and a small Tafel slope (71 mV dec−1), as well as extraordinary stability in acidic electrolyte. This work provides a new facile strategy for the design and synthesis of sustainable and effective molybdenum-based electrocatalysts as alternatives to non-Pt catalysts for HER.

Author(s):  
Xi Yin ◽  
Ling Lin ◽  
Hoon T. Chung ◽  
Ulises Martinez ◽  
Andrew M. Baker ◽  
...  

Finding a low-cost and stable electrocatalyst for hydrogen evolution reaction (HER) as a replacement for scarce and expensive precious metal catalysts has attracted significant interest from chemical and materials research communities. Here, we demonstrate an organic catalyst based on 2,2’-dipyridylamine (dpa) molecules adsorbed on carbon surface, which shows remarkable hydrogen evolution activity and performance durability in strongly acidic polymer electrolytes without involving any metal. The HER onset potential at dpa adsorbed on carbon has been found to be less than 50 mV in sulfuric acid and in a Nafion-based membrane electrode assembly (MEA). At the same time, this catalyst has shown no performance loss in a 60-hour durability test. The HER reaction mechanisms and the low onset overpotential in this system are revealed based on electrochemical study. Density functional theory (DFT) calculations suggest that the pyridyl-N functions as the active site for H adsorption with a free energy of -0.13 eV, in agreement with the unusually low onset overpotential for an organic molecular catalyst.<br>


2019 ◽  
Author(s):  
Xi Yin ◽  
Ling Lin ◽  
Hoon T. Chung ◽  
Ulises Martinez ◽  
Andrew M. Baker ◽  
...  

Finding a low-cost and stable electrocatalyst for hydrogen evolution reaction (HER) as a replacement for scarce and expensive precious metal catalysts has attracted significant interest from chemical and materials research communities. Here, we demonstrate an organic catalyst based on 2,2’-dipyridylamine (dpa) molecules adsorbed on carbon surface, which shows remarkable hydrogen evolution activity and performance durability in strongly acidic polymer electrolytes without involving any metal. The HER onset potential at dpa adsorbed on carbon has been found to be less than 50 mV in sulfuric acid and in a Nafion-based membrane electrode assembly (MEA). At the same time, this catalyst has shown no performance loss in a 60-hour durability test. The HER reaction mechanisms and the low onset overpotential in this system are revealed based on electrochemical study. Density functional theory (DFT) calculations suggest that the pyridyl-N functions as the active site for H adsorption with a free energy of -0.13 eV, in agreement with the unusually low onset overpotential for an organic molecular catalyst.<br>


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yingjie Yang ◽  
Yanhui Yu ◽  
Jing Li ◽  
Qingrong Chen ◽  
Yanlian Du ◽  
...  

AbstractThe investigation of highly effective, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for the upcoming hydrogen energy society. To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy, electrochemical water-splitting is considered the most promising, environmentally friendly, and efficient way to produce pure hydrogen. Compared with the commonly used platinum (Pt)-based catalysts, ruthenium (Ru) is expected to be a good alternative because of its similar hydrogen bonding energy, lower water decomposition barrier, and considerably lower price. Analyzing and revealing the HER mechanisms, as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable. In this review, the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced. Moreover, four major strategies to improve the performance of Ru-based electrocatalysts, including electronic effect modulation, support engineering, structure design, and maximum utilization (single atom) are discussed. Finally, the challenges, solutions and prospects are highlighted to prompt the practical applications of Ru-based electrocatalysts for HER.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4651
Author(s):  
Yilin Deng ◽  
Wei Lai ◽  
Bin Xu

The energy crisis and environmental pollution have attracted much attention and have promoted researches on clean and sustainable hydrogen energy resources. With the help of highly active and stable transition metal nickel-based catalysts, the production of hydrogen from water electrolysis from electrolyzed water has become an inexpensive and efficient strategy for generating hydrogen energy. In recent years, heteroatom doping has been found to be an effective strategy to improve the electrocatalytic hydrogen evolution reaction (HER) performances of nickel-based catalysts in acidic, neutral, and alkaline media. This review will highlight many recent works of inexpensive and readily available heteroatom-doped nickel-based HER catalysts. The evaluation methods for the performances of HER catalyst will be briefly described, and the role of heteroatom doping and its application in nickel-based catalyst will be summarized. This article will also point out some heteroatom doping strategies, which may provide references and inspire the design of other catalysts with dopants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yamei Sun ◽  
Ziqian Xue ◽  
Qinglin Liu ◽  
Yaling Jia ◽  
Yinle Li ◽  
...  

AbstractDeveloping high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.


Catalysts ◽  
2016 ◽  
Vol 6 (12) ◽  
pp. 208 ◽  
Author(s):  
Yingfei Hu ◽  
Gan Jia ◽  
Shuailing Ma ◽  
Jianqiang Hu ◽  
Pinwen Zhu ◽  
...  

2016 ◽  
Vol 4 (38) ◽  
pp. 14577-14585 ◽  
Author(s):  
Haoliang Huang ◽  
Liqin Chen ◽  
Chuanhe Liu ◽  
Xinshun Liu ◽  
Senxuan Fang ◽  
...  

Hierarchical MoS2 with a rich in-plane edge nanostructure is synthesized and exhibits surging HER activity with a low onset potential and Tafel slope.


2018 ◽  
Vol 775 ◽  
pp. 139-143 ◽  
Author(s):  
Luigi A. Dahonog ◽  
Mary Donnabelle L. Balela

Nickel cobaltite (NiCo2O4) nanowires were successfully grown on the surface of carbon fiber via hydrothermal treatment, followed by annealing. After 2 h, SEM revealed the formation of NiCo2O4 nanowire arrays on the surface of the carbon fiber paper. With increasing hydrothermal time from 2 to 12 h, the NiCo2O4 nanowires also self-assembled into urchin-like morphologies. When used as catalysts for hydrogen evolution reaction, the NiCo2O4 nanowires exhibit an onset potential for the cathodic current at-0.13 V vs. Ag/AgCl in 0.1 M KOH.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhuofan Gan ◽  
Chengyong Shu ◽  
Chengwei Deng ◽  
Wei Du ◽  
Bo HUANG ◽  
...  

Electrochemical water splitting is promising method to generate pollution-free and sustainable hydrogen energy. However, the specific activity and durability of noble metal catalysts is the main hindrance to hydrogen evolution...


Sign in / Sign up

Export Citation Format

Share Document