scholarly journals Revisiting the Effect of Slag in Reducing Heat of Hydration in Concrete in Comparison to Other Supplementary Cementitious Materials

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1847 ◽  
Author(s):  
Hoon Moon ◽  
Sivakumar Ramanathan ◽  
Prannoy Suraneni ◽  
Chang-Seon Shon ◽  
Chang-Joon Lee ◽  
...  

Blast furnace slag (SL) is an amorphous calcium aluminosilicate material that exhibits both pozzolanic and latent hydraulic activities. It has been successfully used to reduce the heat of hydration in mass concrete. However, SL currently available in the market generally experiences pre-treatment to increase its reactivity to be closer to that of portland cement. Therefore, using such pre-treated SL may not be applicable for reducing the heat of hydration in mass concrete. In this work, the adiabatic and semi-adiabatic temperature rise of concretes with 20% and 40% SL (mass replacement of cement) containing calcium sulfate were investigated. Isothermal calorimetry and thermal analysis (TGA) were used to study the hydration kinetics of cement paste at 23 and 50 °C. Results were compared with those with control cement and 20% replacements of silica fume, fly ash, and metakaolin. Results obtained from adiabatic calorimetry and isothermal calorimetry testing showed that the concrete with SL had somewhat higher maximum temperature rise and heat release compared to other materials, regardless of SL replacement levels. However, there was a delay in time to reach maximum temperature with increasing SL replacement level. At 50 °C, a significant acceleration was observed for SL, which is more likely related to the pozzolanic reaction than the hydraulic reaction. Semi-adiabatic calorimetry did not show a greater temperature rise for the SL compared to other materials; the differences in results between semi-adiabatic and adiabatic calorimetry are important and should be noted. Based on these results, it is concluded that the use of blast furnace slag should be carefully considered if used for mass concrete applications.

2015 ◽  
Vol 754-755 ◽  
pp. 359-363
Author(s):  
M. Azreen ◽  
M.W. Hussin

Ordinary Portland Cement (OPC) concrete is one of the most widely used construction materials globally, though its production in construction has negative environmental impact. About 0.9 ton of CO2is emitted for every one (1) ton of cement produced. In order to reduce the amount of CO2emission from cement industry, the utilization of supplementary cementitious materials such as pulverized fuel ash (PFA), blast-furnace slag and natural pozzolans is common and effective. Geopolymer is an inorganic binder material and can be produced by a geopolymeric reaction of alkali activating solution with silica and alumina rich source materials such as PFA and blast-furnace slag. In this study, the durability of concrete such as the resistance to sulfuric acid and sulfate solutions due to the effect of blended as of PFA and palm oil fuel ash (POFA), along with alkaline activators were investigated. Consequently, the optimum mix design of the blended ash geopolymer (BAG) concrete and OPC concrete specimens were prepared with water to cement ratio of 0.5 by mass as control. The micro structural analysis by X-ray diffraction (XRD) was done. BAG concrete showed better performance in 2% sulfuric acid and 5% sulfate solutions. From micro structural analysis, it was evident that BAG binder gel (N-A-SH) produced more durable material compared with C-S-H binder gel of OPC. The BAG concrete is strongly recommended to be used as an alternative to OPC concrete in addition to its environmental friendliness. Abundant PFA and POFA can be efficiently utilized to produce a high performance concrete.


2014 ◽  
Vol 976 ◽  
pp. 246-250
Author(s):  
Reyna Sánchez-Ramírez ◽  
Manuela Diaz-Cruz ◽  
Sebastían Díaz de La Torre ◽  
Enrique Rocha-Rangel

In this work, they were produced and characterized cementing composites made with blast furnace slag replacement, for their use in the construction of oil wells. To this, slurries were prepared with a replacement of 20 and 30% slag, as well as a slurry with 100 % slag and a slurry with 100% H-cement were prepared. Starting materials were characterized by chemical analysis, X-ray diffraction and Fourier Transformed Infra Red. Slurries also were activated with sodium silicate in order to study theirs hydration kinetics, driving by isothermal calorimetry. These studies were complemented by the preparation of specimens of 4 X 4 X 16 cm to which they determine its compressive and bending strength during 2 and 28 days of curing. From the results it can be concluded that it was obtained a product that can be effectively used in the construction of oil wells.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5190
Author(s):  
Laura Boquera ◽  
David Pons ◽  
Ana Inés Fernández ◽  
Luisa F. Cabeza

Six supplementary cementitious materials (SCMs) were identified to be incorporated in concrete exposed to high-temperature cycling conditions within the thermal energy storage literature. The selected SCMs are bauxite, chamotte, ground granulated blast furnace slag, iron silicate, silica fume, and steel slag. A microstructural characterization was carried out through an optical microscope, X-ray diffraction analysis, and FT-IR. Also, a pozzolanic test was performed to study the reaction of SCMs silico-aluminous components. The formation of calcium silica hydrate was observed in all SCMs pozzolanic test. Steel slag, iron silicate, and ground granulated blast furnace slag required further milling to enhance cement reaction. Moreover, the tensile strength of three fibers (polypropylene, steel, and glass fibers) was tested after exposure to an alkalinity environment at ambient temperature during one and three months. Results show an alkaline environment entails a tensile strength decrease in polypropylene and steel fibers, leading to corrosion in the later ones.


2020 ◽  
Vol 16 (3) ◽  
pp. 185
Author(s):  
Rizki Amalia Tri Cahyani ◽  
Ernawan Setyono ◽  
Yunan Rusdianto

Serangan sulfat (sulfate attack) termasuk hal yang umum terjadi pada struktur beton, mengingat ion sulfat banyak dijumpai pada tanah, air tanah dan air laut. Peningkatan ketahanan beton melawan sulfat akan berdampak besar pada durabilitas dan umur layan struktur beton. Penambahan supplementary cementitious materials seperti GGBFS (ground granulated blast furnace slag) ke campuran beton telah terbukti memberikan pengaruh positif terhadap durabilitas dan properti mekanis beton. Namun, GGBFS tergolong material yang baru dikembangkan di Indonesia dan potensinya dalam meningkatkan durabilitas beton belum dimanfaatkan secara luas. Berdasarkan hal tersebut, perlu dilakukan investigasi terkait aplikasi GGBFS dan pengaruhnya terhadap durabilitas beton, terutama dalam melawan serangan sulfat. Dalam studi ini, durabilitas beton dengan persentase penggantian GGBFS 30%, 50% dan 70% terhadap total volume binder dievaluasi menggunakan perlakuan siklus basah-kering dalam larutan magnesium sulfat. Tingkat degradasi beton diukur dengan melakukan observasi terhadap perubahan kuat tekan dan massa spesimen akibat serangan sulfat. Hasil penelitian menunjukkan bahwa penggantian GGBFS hingga 50% dari total volume binder dapat meningkatkan ketahanan beton terhadap serangan sulfat, ditunjukkan dengan kehilangan massa dan reduksi kekuatan yang lebih rendah dibandingkan spesimen kontrol dengan 100% semen Portland.


Sign in / Sign up

Export Citation Format

Share Document