scholarly journals How the Crosslinking Agent Influences the Thermal Stability of RTV Phenyl Silicone Rubber

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 88 ◽  
Author(s):  
Chen He ◽  
Boqian Li ◽  
Ying Ren ◽  
Wu Lu ◽  
Yibing Zeng ◽  
...  

In this work, a thermal degradation mechanism of room temperature vulcanized (RTV) phenyl silicone rubber that was vulcanized by different crosslinking agents was discussed. Firstly, RTV phenyl silicone rubber samples were prepared by curing hydroxyl-terminated polymethyldiphenylsiloxane via three crosslinking agents, namely, tetraethoxysilane (TEOS), tetrapropoxysilane (TPOS), and polysilazane. Secondly, the ablation properties of RTV phenyl silicone rubber were studied by the muffle roaster test and FT-IR. Thirdly, thermal stability of the three samples was studied by thermogravimetric (TG) analysis. Finally, to explore the thermal degradation mechanism, the RTV phenyl silicone rubber vulcanized by different crosslinking agents were characterized by TG analysis-mass spectrum (TG-MS) and pyrolysis gas chromatogram-mass spectrum (pyGC-MS). Results showed that the thermal stability of RTV phenyl silicone rubber is related to the amount of residual Si–OH groups. The residual Si–OH groups initiated the polysiloxane chain degradation via an ‘unzipping’ mechanism.

2015 ◽  
Vol 605 ◽  
pp. 28-36 ◽  
Author(s):  
Weizhen Fang ◽  
Xingrong Zeng ◽  
Xuejun Lai ◽  
Hongqiang Li ◽  
Wanjuan Chen ◽  
...  

2013 ◽  
Vol 631-632 ◽  
pp. 277-280 ◽  
Author(s):  
Jian Min Zhao ◽  
Li Wen Tan

The flammability characteristics and thermal stability were studied based on LOI, TG analysis and SEM tests. The results revealed that the additive flame retardant enhanced the flame retardancy of PA. The TG analysis showed that the thermal stability of flame-retardant PA fibers was better than PA fibers, because flame-retardant PA fibers got higher residue content and thermal degradation activation energy. The SEM images indicated the flame retardant residues were infusible, which can impede the molten dropping of PA fibers during combustion.


2013 ◽  
Vol 78 (12) ◽  
pp. 2179-2200 ◽  
Author(s):  
Ivanka Popovic ◽  
Lynne Katsikas

One group of polymers that may help relieve the dependence on crude oil is based on itaconic acid, the biotechnological production of which has become feasible. Itaconic acid and its derivatives can easily be incorporated into polymers and may serve as a substitute for petrochemically derived acrylate or methacrylate monomers. The applications of polymers based on itaconic di-esters depend largely on their thermal stability. The thermal stability of poly(di-itaconates) is dependent, not only on the general structure of the monomer repeating unit, but also on the structure of the ester substituent. Depolymerization, initiated by b-scission or random main chain scission, is the dominant thermolysis mechanism in most cases. The depolymerization of poly-(di-itaconates) may be accompanied by de-esterification, elimination, cross-linking, random main or side chain scission and carbonization. Comparison of the thermal degradation mechanism of polymeric di-esters of itaconic acid to that of corresponding poly(methacrylates) confirms the viability of substituting poly(methacrylates) by poly(di-itaconates).


2018 ◽  
Vol 926 ◽  
pp. 45-50 ◽  
Author(s):  
Qiu Hong Mu ◽  
Dan Peng ◽  
Feng Wang ◽  
Jin Hui Li ◽  
Shuo Zhang

The kinetics of the thermal degradation and thermal stability of thermal conductive silicone rubber filled with Al2O3 and ZnO were investigated by thermogravimetric analysis in a flowing nitrogen atmosphere at a heating rate of 10°C/min. The rate parameters were evaluated by the method of Freeman–Carroll. The results show that the thermal degradation of silicone rubber begins at about 350°C and ends at about 600°C. The thermal degradation is multistage, in which zero-order reactions are principal. The kinetics of the thermal degradation of thermal conductive silicone rubber has relevance to its loading of thermal conductive filler. The activation energies are temperature-sensitive and their sensitivity to temperature becomes weak as temperature increases.


2021 ◽  
pp. 002199832110082
Author(s):  
Azzeddine Gharsallah ◽  
Abdelheq Layachi ◽  
Ali Louaer ◽  
Hamid Satha

This paper reports the effect of lignocellulosic flour and talc powder on the thermal degradation behavior of poly (lactic acid) (PLA) by thermogravimetric analysis (TGA). Lignocellulosic flour was obtained by grinding Opuntia Ficus Indica cladodes. PLA/talc/ Opuntia Ficus Indica flour (OFI-F) biocomposites were prepared by melt processing and characterized using Wide-angle X-ray scattering (WAXS) and Scanning Electron Microscope (SEM). The thermal degradation of neat PLA and its biocomposites can be identified quantitatively by solid-state kinetics models. Thermal degradation results on biocomposites compared to neat PLA show that talc particles at 10 wt % into the PLA matrix have a minor impact on the thermal stability of biocomposites. Loading OFI-F and Talc/OFI-F mixture into the PLA matrix results in a decrease in the maximum degradation temperature, which means that the biocomposites have lower thermal stability. The activation energies (Ea) calculated by the Flynn Wall Ozawa (FWO) and Kissinger Akahira Sunose (KAS) model-free approaches and by model-fitting (Kissinger method and Coats-Redfern method) are in good agreement with one another. In addition, in this work, the degradation mechanism of biocomposites is proposed using Coats-Redfern and Criado methods.


2013 ◽  
Vol 820 ◽  
pp. 84-87
Author(s):  
Zheng Zhou Wang ◽  
Charles A. Wilkie

Cadmin sulfate nanoparticles, hollow sphere (CdS-HS) and rode (CdS-NR) were synthesized by ultrasonic and solvothermal process, respectively. The effect of the two kinds of nanoparticles on flammability of polystyrene was investigated using cone calorimeter (Cone) and microscale combustion calorimeter (MCC). Cone data indicate that the incorporation of 1% CdS nanoparticles leads to a about 20% reduction in the peak heat release rate (PHRR) compared to the pure PS; CdS-NR is more efficient in reducing the PHRR proved by both Cone and MCC results. The TG results show that the addition of the nanoparticles mainly increases thermal stability of PS at high temepratures.


Sign in / Sign up

Export Citation Format

Share Document