combustion calorimeter
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 0)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 381
Author(s):  
Juan Mentado-Morales ◽  
Arturo Ximello-Hernández ◽  
Javier Salinas-Luna ◽  
Vera L. S. Freitas ◽  
Maria D. M. C. Ribeiro da Silva

The thermochemical study of the 1,3-bis(N-carbazolyl)benzene (NCB) and 1,4-bis(diphenylamino)benzene (DAB) involved the combination of combustion calorimetric (CC) and thermogravimetric techniques. The molar heat capacities over the temperature range of (274.15 to 332.15) K, as well as the melting temperatures and enthalpies of fusion were measured for both compounds by differential scanning calorimetry (DSC). The standard molar enthalpies of formation in the crystalline phase were calculated from the values of combustion energy, which in turn were measured using a semi-micro combustion calorimeter. From the thermogravimetric analysis (TGA), the rate of mass loss as a function of the temperature was measured, which was then correlated with Langmuir’s equation to derive the vaporization enthalpies for both compounds. From the combination of experimental thermodynamic parameters, it was possible to derive the enthalpy of formation in the gaseous state of each of the title compounds. This parameter was also estimated from computational studies using the G3MP2B3 composite method. To prove the identity of the compounds, the 1H and 13C spectra were determined by nuclear magnetic resonance (NMR), and the Raman spectra of the study compounds of this work were obtained.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Qiang Xu ◽  
Lin Jiang ◽  
Andrea Majlingova ◽  
Nikoleta Ulbrikova ◽  
Rhoda Afriyie Mensah ◽  
...  

To study the practicability of a micro combustion calorimeter to analyze the calorimetry kinetics of wood, a micro combustion calorimeter with 13 heating rates from 0.1 to 5.5 K/s was used to perform the analysis of 10 kinds of common hardwood and softwood samples. As a microscale combustion measurement method, MCC (microscale combustion calorimetry) can be used to judge the flammability of materials. However, there are two methods for measuring MCC: Method A and Method B. However, there is no uniform standard for the application of combustible MCC methods. In this study, the two MCC standard measurement Methods A and B were employed to check their practicability. With Method A, the maximum specific heat release rate, heat release temperature, and specific heat release of the samples were obtained at different heating rates, while for Method B, the maximum specific combustion rate, combustion temperature and net calorific values of the samples were obtained at different heating rates. The ignition capacity and heat release capacity were then derived and evaluated for all the common hardwood and softwood samples. The results obtained by the two methods have significant differences in the shape of the specific heat release rate curves and the amplitude of the characteristic parameters, which lead to the differences of the derived parameters. A comparison of the specific heat release and the net calorific heat of combustion with the gross caloric values and heating values obtained by bomb calorimetry was also made. The results show that Method B has the potentiality to evaluate the amount of combustion heat release of materials.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4113
Author(s):  
Ruiqing Shen ◽  
Tian-Hao Yan ◽  
Rong Ma ◽  
Elizabeth Joseph ◽  
Yufeng Quan ◽  
...  

Metal–organic frameworks (MOFs) are emerging as novel flame retardants for polymers, which, typically, can improve their thermal stability and flame retardancy. However, there is a lack of specific studies on the thermal decomposition kinetics of MOF-based polymer composites, although it is known that they are important for the modeling of flaming ignition, burning, and flame spread over them. The thermal decomposition mechanisms of poly (methyl methacrylate) (PMMA) have been well investigated, which makes PMMA an ideal polymer to evaluate how fillers affect its decomposition process and kinetics. Thus, in this study, UiO-66, a common type of MOF, was embedded into PMMA to form a composite. Based on the results from the microscale combustion calorimeter, the values of the apparent activation energy of PMMA/UiO-66 composites were calculated and compared against those of neat PMMA. Furthermore, under cone calorimeter tests, UiO-66, at only 1.5 wt%, can reduce the maximum burning intensity and average mass loss rate of PMMA by 14.3% and 12.4%, respectively. By combining UiO-66 and SiO2 to form a composite, it can contribute to forming a more compact protective layer, which shows a synergistic effect on reducing the maximum burning intensity and average mass loss rate of PMMA by 22.0% and 14.7%, respectively.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 69
Author(s):  
Eva Magovac ◽  
Bojana Vončina ◽  
Ana Budimir ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
...  

Environmentally benign layer-by-layer (LbL) deposition was used to obtain flame-retardant and antimicrobial cotton. Cotton was coated with 8, 10, and 12 phytic acid (PA) and chitosan (CH)-urea bilayers (BL) and then immersed into copper (II) sulfate (CuSO4) solution. Our findings were that 12 BL of PA/CH-urea + Cu2+ were able to stop flame on cotton during vertical flammability testing (VFT) with a limiting oxygen index (LOI) value of 26%. Microscale combustion calorimeter (MCC) data showed a reduction of peak heat release rates (pHRR) of more than 61%, while the reduction of total heat release (THR) was more than 54%, relative to untreated cotton. TG-IR analysis of 12 BL-treated cotton showed the release of water, methane, carbon dioxide, carbon monoxide, and aldehydes, while by adding Cu2+ ions, the treated cotton produces a lower amount of methane. Treated cotton also showed no levoglucosan. The intumescent behavior of the treatment was indicated by the bubbled structure of the post-burn char. Antibacterial testing showed a 100% reduction of Klebsiella pneumoniae and Staphylococcus aureus. In this study, cotton was successfully functionalized with a multifunctional ecologically benign flame-retardant and antibacterial nanocoating, by means of LbL deposition.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xin’guo Zheng ◽  
Quanxiao Dong ◽  
Xi Wang ◽  
Peiyun Yu ◽  
Weimin Wang ◽  
...  

In this work, silica aerogel was modified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-1-oxide (DOPO). Then DOPO-immobilized silica aerogel nanoparticles were used as a flame retardant to prepare flame-retardant polyurethane foams. Microscale combustion calorimeter and cone calorimeter tests were employed to evaluate the flame retardancy of polyurethane foams. It was found that both the heat release rate and the total heat release of the composites were reduced with the incorporation of DOPO immobilized silica aerogel. It is speculated that the DOPO-immobilized silica aerogel nanoparticles can inhibit the degradation of polyurethane and catalyze the formation of carbonaceous carbon on the surface.


2021 ◽  
Vol 1107 (1) ◽  
pp. 012035
Author(s):  
J.O. Dirisu ◽  
OSI Fayomi ◽  
S.O Oyedepo ◽  
J.A.O. Oyekunle ◽  
A.A Asere ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5492
Author(s):  
Eva Magovac ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
Sandra Bischof

Chemically bleached cotton fabric was treated with phytic acid (PA), chitosan (CH) and urea by means of layer-by-layer (LbL) deposition to impart flame retardant (FR) behavior using only benign and renewable molecules. Samples were treated with 8, 10, 12 and 15 bilayers (BL) of anionic PA and cationic CH, with urea mixed into the aqueous CH solution. Flammability was evaluated by measuring limiting oxygen index (LOI) and through vertical flame testing. LOI values are comparable to those obtained with commercial flame-retardant finishes, and applying 10 or more bilayers renders cotton self-extinguishing and able to pass the vertical flame test. Microscale combustion calorimeter (MCC) measurements show the average reduction of peak heat release rate (pHRR) of all treated fabrics of ~61% and the reduction of total heat release (THR) of ~74%, in comparison to untreated cotton. Decomposition temperatures peaks (T1max) measured by thermogravimetric analyzer (TG) decreased by approximately 62 °C, while an average residue at 650 °C is ~21% for 10 and more bilayers. Images of post-burn char indicate that PA/CH-urea treatment is intumescent. The ability to deposit such a safe and effective FR treatment, with relatively few layers, makes LbL an alternative to current commercial treatments.


2020 ◽  
Vol 3 (2) ◽  
pp. 1-6
Author(s):  
I. B. Sobechko ◽  
◽  
Yu. I. Gorak ◽  
V. M. Dibrivnyi ◽  
L. V. Goshko ◽  
...  

Using the precision bomb combustion calorimeter B-08-MA, the combustion energies of 5- (2- nitrophenyl) -furan-2-carbaldehyde, 5- (2-nitro-4-methylphenyl) -furan-2-carbaldehyde and 5- ( 2-nitro-4- oxymethylphenyl) -furan-2-carbaldehyde. Based on the obtained data, the values of enthalpies of combustion and formation of substances in the condensed state are calculated. A comparative analysis of experimentally determined values with theoretically calculated values by additive calculation methods is given.


2020 ◽  
Vol 38 (6) ◽  
pp. 522-551
Author(s):  
Alexander B Morgan ◽  
Mary L Galaska

Wool is a natural fiber with lower heat release/flammability than some synthetic fabrics, but it has not been well studied for its heat release when other fibers such as cotton, linen, and nylon are present in the woven fabric. In this article, the heat release and vertical flame spread of six commercially available natural color fabrics is reported. This includes 100% wool, 80% wool/20% nylon, 70% wool/30% linen, 45% wool/55% cotton, and 40% wool/38% cotton/12% nylon/10% metallic thread fabric. Heat release was measured through cone calorimetry (ASTM E1354) as a function of the sample mounting method, through microscale combustion calorimetry (ASTM D7309), and flame spread was measured by ASTM D6413. The type of insulated backing used greatly affected the cone calorimeter results, and fabric types did show some effects in vertical flame spread and microscale combustion calorimeter testing.


2020 ◽  
Vol 7 (9) ◽  
pp. 200800
Author(s):  
Xue Yang ◽  
Hao Wang ◽  
Xueqing Liu ◽  
Jiyan Liu

A novel nitrogen-containing alkylphosphinate salt—aluminium β-(p-nitrobenzamide) ethyl methyl phosphinate (AlNP) was synthesized and used to flame retard acrylonitrile–butadiene–styrene copolymer (ABS). The Fourier transform infrared spectrometry, 1 H, 13 C and 31 P nuclear magnetic resonance and X-ray fluorescent spectroscopy (XRF) were applied to characterize the structure and composition of products. The flame retardancy performance, thermal properties and mechanical strength of the ABS/AlNP with respect to AlNP loading were investigated. AlNP was stable before 330°C and decomposed very slowly with residues high up to 56.1% at 700°C. Adding 25–30 wt% of AlNP alone can make ABS to pass V0 rating in the vertical burning tests (UL 94). The results according to the micro combustion calorimeter, thermogravimetric analysis showed that AlNP can depress the heating release and retard the thermal degradation of the ABS. Scanning electron microscopy observation of the residues from LOI test indicated that AlNP formed the condensed and tough residues layer during combustion; XRF analysis showed that the residues contained phosphorus and aluminium element and nitrogen element was not detected. The compact phosphorus/aluminium-rich substance acted as a barrier to enhance flame-retardant properties of the ABS.


Sign in / Sign up

Export Citation Format

Share Document