scholarly journals Early-Age Evolution of Strength, Stiffness, and Non-Aging Creep of Concretes: Experimental Characterization and Correlation Analysis

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 207 ◽  
Author(s):  
Mario Ausweger ◽  
Eva Binder ◽  
Olaf Lahayne ◽  
Roland Reihsner ◽  
Gerald Maier ◽  
...  

Six different concretes are characterized during material ages between 1 and 28 days. Standard tests regarding strength and stiffness are performed 1, 3, 7, 14, and 28 days after production. Innovative three-minute-long creep tests are repeated hourly during material ages between one and seven days. The results from the standard tests are used to assess and to improve formulas of the fib Model Code 2010: the correlation formula between the 28-day values of the strength and the stiffness, and the evolution formulas describing the early-age evolution of the strength and the stiffness during the first four weeks after production. The results from the innovative tests are used to develop a correlation formula between the 28-day values of Young’s modulus and the creep modulus, and an evolution formula describing the early-age evolution of the creep modulus during the first four weeks after production. Particularly, the analyzed CEM I concretes develop stiffness and strength significantly faster than described by the formulas of the Model Code. The creep modulus of the investigated concretes evolves significantly slower than their strength and stiffness. Thus, concrete loaded at early ages is surprisingly creep active, even if the material appears to be quite mature in terms of its strength and stiffness.

Author(s):  
Walraven ◽  
Bigaj-van Vliet ◽  
Balazs ◽  
Cairns ◽  
Cervenka ◽  
...  
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 254
Author(s):  
Alinda Dey ◽  
Akshay Vijay Vastrad ◽  
Mattia Francesco Bado ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

The contribution of concrete to the tensile stiffness (tension stiffening) of a reinforced concrete (RC) member is a key governing factor for structural serviceability analyses. However, among the current tension stiffening models, few consider the effect brought forth by concrete shrinkage, and none studies take account of the effect for very long-term shrinkage. The present work intends to tackle this exact issue by testing multiple RC tensile elements (with different bar diameters and reinforcement ratios) after a five-year shrinking time period. The experimental deformative and tension stiffening responses were subjected to a mathematical process of shrinkage removal aimed at assessing its effect on the former. The results showed shrinkage distinctly lowered the cracking load of the RC members and caused an apparent tension stiffening reduction. Furthermore, both of these effects were exacerbated in the members with higher reinforcement ratios. The experimental and shrinkage-free behaviors of the RC elements were finally compared to the values predicted by the CEB-fib Model Code 2010 and the Euro Code 2. Interestingly, as a consequence of the long-term shrinkage, the codes expressed a smaller relative error when compared to the shrinkage-free curves versus the experimental ones.


2012 ◽  
Vol 5 (5) ◽  
pp. 659-691 ◽  
Author(s):  
P. V. P. Sacramento ◽  
M. P. Ferreira ◽  
D. R. C. Oliveira ◽  
G. S. S. A. Melo

Punching strength is a critical point in the design of flat slabs and due to the lack of a theoretical method capable of explaining this phenomenon, empirical formulations presented by codes of practice are still the most used method to check the bearing capacity of slab-column connections. This paper discusses relevant aspects of the development of flat slabs, the factors that influence the punching resistance of slabs without shear reinforcement and makes comparisons between the experimental results organized in a database with 74 slabs carefully selected with theoretical results using the recommendations of ACI 318, EUROCODE 2 and NBR 6118 and also through the Critical Shear Crack Theory, presented by Muttoni (2008) and incorporated the new fib Model Code (2010).


2021 ◽  
Author(s):  
Danny Jilissen ◽  
Rob Vergoossen ◽  
Yuguang Yang ◽  
Eva Lantsoght

<p>Due to the large number of underpasses in the Netherlands that have to be assessed, a project at the Delft University of Technology in cooperation with Royal HaskoningDHV was started. Research was conducted into the automation of the structural assessment of existing reinforced concrete underpasses in the Netherlands. The developed Automated Structural Assessment Tool (ASA Tool) consists of an analytical model and a 2.5D FEM model. The analytical model uses traffic load distribution following the Guyon-Massonnet-Bares method for bending and a method based on <i>fib </i>Model Code 2010 for shear. The script-based 2.5D FEM model uses 2D shell elements and performs a linear elastic analysis. The input and output can be linked to a database for assessment of large batches. Sensitivity analyses showed that in-plane load distribution following <i>fib </i>Model Code 2010 combined with vertical load distribution according to EN 1991-2:2003 results in underestimated shear forces.</p>


2017 ◽  
Vol 17 (3) ◽  
pp. 281-294 ◽  
Author(s):  
Antonio Carlos dos Santos ◽  
Angela Maria de Arruda ◽  
Turibio José da Silva ◽  
Paula de Carvalho Palma Vitor

Resumo O módulo de elasticidade do concreto é uma propriedade importante para os profissionais envolvidos na indústria da construção civil, uma vez que seu valor é determinante para o controle das deformações. Este trabalho avaliou o módulo de elasticidade de três classes distintas de concreto (C20, C30 e C40) produzidas com dois tipos litológicos de rochas, basalto e dolomito, de diferentes jazidas da região do Triângulo Mineiro. Como parte do estudo experimental, foram moldadas 324 amostras cilíndricas de 10 cm × 20 cm. Os valores de módulo de elasticidade obtidos foram comparados com seis formulações propostas em quatro normas, institutos e códigos do concreto: ABNT NBR 6118 versão 2007 e 2014, ACI 318, EUROCODE 2 and FIB Model Code, Ibracon 2003. Dentre as formulações propostas pelas normas, as indicadas pela FIB Model Code (2010) e ABNT NBR 6118 (2014) apresentaram valores mais próximos aos resultados experimentais deste estudo.


2018 ◽  
Vol 68 (331) ◽  
pp. 162
Author(s):  
K. Liu ◽  
J. Yan ◽  
C. Zou

To investigate the behaviour of recycled aggregate concrete (RAC) under combined compression and shear stresses, 75 hollow cylinder specimens prepared with various replacement ratios of recycled coarse aggregate (RCA) were tested with a self-designed loading device. The results showed that the failure pattern was similar for RAC with different replacement ratios of RCA. The ultimate shear stress improved with an increasing axial compression ratio of less than 0.6 and declined after exceeding 0.6. A modified failure criterion for RAC with normal strength under combined compression and shear stresses was proposed. A new procedure to predict the shear strength for RAC beams without stirrups was developed based on the proposed failure criterion, showing a better correlation with the experimental results than the predictions calculated by GB50010, Eurocode 2, fib Model Code 2010 and ACI 318-11.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4378
Author(s):  
Ana Elisabete Paganelli Guimarães de Avila Jacintho ◽  
Ivanny Soares Gomes Cavaliere ◽  
Lia Lorena Pimentel ◽  
Nádia Cazarim Silva Forti

This paper presents a study with concretes produced with natural aggregates, recycled concrete aggregates (RCA) and waste porcelain aggregates (WPA). The study analyzed the influence of recycled aggregates in the mechanical properties of conventional concretes and evaluated the difference between measured and predicted values of elasticity modulus. The incorporation of WPA in concrete showed better mechanical results compared to the concretes produced with RCA. Measured elasticity moduli were lower than moduli predicted by NBR 6118:2014 and fib Model Code 2010, while measured results were greater than values predicted by Eurocode 2:2004 and ACI 318:2014, as expected, which indicated the safety of the latter two standards.


Sign in / Sign up

Export Citation Format

Share Document