scholarly journals Development of a New Ultra-High-Precision Magnetic Abrasive Finishing for Wire Material Using a Rotating Magnetic Field

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 312 ◽  
Author(s):  
Lida Heng ◽  
Cheng Yin ◽  
Seok Han ◽  
Jun Song ◽  
Sang Mun

In this paper, we propose a new ultra-high-precision magnetic abrasive finishing method for wire material which is considered to be difficult with the existing finishing process. The processing method uses a rotating magnetic field system with unbonded magnetic abrasive type. It is believed that this process can efficiently perform the ultra-high-precision finishing for producing a smooth surface finish and removing a diameter of wire material. For such a processing improvement, the following parameters are considered; rotational speed of rotating magnetic field, vibration frequency of wire material, and unbonded magnetic abrasive grain size. In order to evaluate the performance of the new finishing process for the wire material, the American Iron and Steel Institute (AISI) 1085 steel wire was used as the wire workpiece. The experimental results showed that the original surface roughness of AISI 1085 steel wire was enhanced from 0.25 µm to 0.02 µm for 60 s at 800 rpm of rotational speed. Also, the performance of the removed diameter was excellent. As the result, a new ultra-high-precision magnetic abrasive finishing using a rotating magnetic field with unbonded magnetic abrasive type could be successfully adopted for improving the surface roughness and removing the diameter of AISI 1085 steel wire material.

Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Huijun Xie ◽  
Yanhua Zou

The magnetic abrasive finishing (MAF) process is an ultra-precision surface finishing process. In order to further improve the finishing efficiency and surface quality, the MAF process using an alternating magnetic field was proposed in the previous research, and it was proven that the alternating magnetic field has advantages compared with the static magnetic field. In order to further develop the process, this study investigated the effect on finishing characteristics when the alternating current waveform is a square wave. The difference between the fluctuation behavior of the magnetic cluster in two alternating magnetic fields (sine wave and square wave) is observed and analyzed. Through analysis, it can be concluded that the use of a square wave can make the magnetic cluster fluctuate faster, and as the size of the magnetic particles decreases, the difference between the magnetic cluster fluctuation speed of the two waveforms is greater. The experimental results show that the surface roughness of SUS304 stainless steel plate improves from 328 nm Ra to 14 nm Ra within 40 min.


Author(s):  
Arthur A. Graziano ◽  
Vasishta Ganguly ◽  
Tony Schmitz ◽  
Hitomi Yamaguchi

Freeform surfaces, including the femoral components of knee prosthetics, present a significant challenge in manufacturing. The finishing process is often performed manually, which leads to surface finish variations. In the case of knee prosthetics, this can be a factor leading to accelerated wear of the polyethylene tibial component. The wear resistance of polyethylene components might be influenced by not only the roughness but also the lay of femoral component surfaces. This study applies magnetic abrasive finishing (MAF) for nanometer-scale finishing of cobalt chromium alloys, which are commonly used in knee prosthetics and other freeform components. Using flat disks as workpieces, this paper shows the dominant parameters for controlling the lay in MAF and demonstrates the feasibility of MAF to alter the lay while controlling the surface roughness. The manually finished disk surfaces (with roughness around 3 nm Sa), consisting of random cutting marks, were compared to MAF-produced surfaces (also with roughness around 3 nm Sa) with different lays. Tests using deionized water droplets show that the lay influences the wetting properties even if the surface roughness changes by no more than a nanometer. Surfaces with unidirectional cutting marks exhibit the least wettability, and increasing the cross-hatch angle in the MAF-produced surfaces increases the wettability. Surfaces consisting of short, intermittent cutting marks were the most wettable by deionized water.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Mehrdad Vahdati ◽  
SeyedAlireza Rasouli

The attempts of researchers in industries to obtain accurate and high quality surfaces led to the invention of new methods of finishing. Magnetic abrasive finishing (MAF) is a relatively new type of finishing in which the magnetic field is used to control the abrasive tools. Applications such as the surface of molds are ones of the parts which require very high surface smoothness. Usually this type of parts has freeform surface. In this study, the effect of magnetic abrasive process parameters on freeform surfaces of parts made of aluminum is examined. This method is obtained through combination of magnetic abrasive process and Control Numerical Computer (CNC). The use of simple hemisphere for installation on the flat area of the magnets as well as magnets’ spark in curve form is a measure done during testing the experiments. The design of experiments is based on response surface methodology. The gap, the rotational speed of the spindle, and the feed rate are found influential and regression equations governing the process are also determined. The impact of intensity of the magnetic field is obtained using the finite element software of Maxwell. Results show that in concave areas of the surface, generally speaking, the surface roughness decreases to 0.2 μm from its initial 1.3 μm roughness. However, in some points the lowest surface roughness of 0.08 μm was measured.


2005 ◽  
Vol 291-292 ◽  
pp. 281-286 ◽  
Author(s):  
Yan Hua Zou ◽  
Takeo Shinmura

This paper examines a new magnetic field assisted machining process using a magnetic machining jig. By using this process, a high efficiency and high quality internal finishing process can be achieved, and it was clarified that it was very effective to finish the internal surface of a thick tube (5~30mm in thickness). In this study, the experiments performed on the SUS304 stainless steel tubes (10mm in thickness) examine the applicability of improving the internal surface roughness and the roundness of inside tube, and it also examine the effects of a rotational speed of the magnetic machining jig. The results showed that this processing method enables improve the internal surface roughness and the roundness of inside tube. It is clarified that the roundness of inside tube is highly dependent on the rotational speed of magnetic machining jig, and the roundness can be improved rapidly at a higher rotational speed with the magnetic machining jig.


Sign in / Sign up

Export Citation Format

Share Document